B M E 1 — COOPERATIVE EDUCATION PROGRAM
1 credit.
Work experience which combines classroom theory with practical knowledge of operations to provide students with a background upon which to base a professional career in industry.
Requisites: Sophomore standing
Course Designation: Workplace - Workplace Experience Course
Repeatable for Credit: Yes, unlimited number of completions

B M E 200 — BIOMEDICAL ENGINEERING DESIGN
1 credit.
Students will work in a team on a client-centered biomedical engineering design project to learn concept generation, product analysis, specifications, evaluation, clinical trials, regulation, liability, and ethics.
Requisites: Sophomore standing in biomedical engineering
Repeatable for Credit: No
Last Taught: Fall 2017

B M E 201 — BIOMEDICAL ENGINEERING FUNDAMENTALS AND DESIGN
2 credits.
Fundamentals of biomedical engineering and principles of design. Hands-on skills including computer-aided design, machining, and fabrication of a physical medical device prototype.
Requisites: Sophomore standing in biomedical engineering
Repeatable for Credit: No

B M E 300 — BIOMEDICAL ENGINEERING DESIGN
1 credit.
Students will work in a team on a client-centered biomedical engineering design project to learn concept generation, product analysis, specifications, evaluation, clinical trials, regulation, liability, and ethics.
Requisites: BME 201, 315 or con reg
Repeatable for Credit: No
Last Taught: Fall 2017

B M E 301 — BIOMEDICAL ENGINEERING DESIGN
1 credit.
Students will work in a team on a client-centered biomedical engineering design project to learn concept generation, product analysis, specifications, evaluation, clinical trials, regulation, liability, and ethics.
Requisites: Jr st in biomed engr, BME 430 or con reg
Repeatable for Credit: No

B M E 310 — BIOINSTRUMENTATION
3 credits.
A sophomore level first course in bioinstrumentation covering clinical and research measurements. Laboratory experiments complement the lectures. Open only to students in the BME program or consent of instructor
Requisites: CHEM 109 or (CHEM 103 and CHEM 104); PHYSICS 202 or PHYSICS 208; MATH 234 or concurrent registration.
Repeatable for Credit: No

B M E 315 — BIOMECHANICS
3 credits.
This course will provide an introduction to the mechanical behavior of biological tissues and systems. Specific topics include: structure and function of biological tissues, mechanical properties of biological tissues, analysis of specific tissues (i.e. bone, muscle, and soft connective tissues). Open only to students in the BME program or consent of instructor
Requisites: MATH 234; PHYSICS 202 or PHYSICS 208; EMA 303 or ME 306.
Repeatable for Credit: No

B M E/CBE 320 — INTRODUCTORY TRANSPORT PHENOMENA
4 credits.
Mass, momentum, and energy transport; calculation of transport coefficients; solution to problems in viscous flow, heat conduction, and diffusion; dimensional analysis; mass, momentum, and heat transfer coefficients; over-all balances; elementary applications.
Requisites: PHYSICS 201, MATH 319 or 320, CBE 250 with grade of C or better; or consent of instructor
Repeatable for Credit: No

B M E/CBE 330 — ENGINEERING PRINCIPLES OF MOLECULES, CELLS, AND TISSUES
3 credits.
Introduction to the fundamental principles of kinetics and transport that are relevant for the analysis of biological systems. Topics covered include concepts of reaction rate, stoichiometry, equilibrium, momentum/mass transport, and the interaction between transport and kinetics in biological systems.
Requisites: (E M A 201 or PHYSICS 201 or 207) and (MATH 319 or MATH 320) and (CHEM 104 or 109)
Repeatable for Credit: No
Last Taught: Fall 2017

B M E 389 — HONORS IN RESEARCH
1-3 credits.
Undergraduate honors research projects supervised by faculty members. Not available for graduate credit.
Requisites: Admission to BME Undergraduate Honors in Research Program
Course Designation: Honors - Honors Only Courses (H)
Repeatable for Credit: Yes, unlimited number of completions

B M E 399 — INDEPENDENT STUDY
1-3 credits.
Requisites: So st in biomedical engineering cons inst
Course Designation: Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Repeatable for Credit: Yes, unlimited number of completions

B M E 400 — CAPSTONE DESIGN COURSE IN BIOMEDICAL ENGINEERING
3 credits.
This capstone course applies classroom study to solve a directed client-based biomedical engineering design project.
Requisites: BME 301, 310, 315, 430, Sr st in biomed engr or cons inst
Repeatable for Credit: No
Last Taught: Fall 2017
B M E 402 — BIOMEDICAL ENGINEERING DESIGN
1 credit.

Students work in a team to evaluate, refine, document and orally present a client-centered biomedical engineering design completed in capstone design course.

Requisites: BME 400, Sr st in biomed engr or cons inst

Repeatable for Credit: No

B M E/M E 415 — BIOMECHANICS OF HUMAN MOVEMENT
3 credits.

An overview of experimental and modeling techniques used to study human movement. Specific topics will include locomotion, motion capture systems, force plates, muscle mechanics, musculoskeletal modeling, three dimensional kinematics, inverse dynamics, forward dynamic simulation and imaging based biomechanics. Homework and laboratory activities will be conducted that emphasize applications of movement biomechanics in orthopedics and rehabilitation. The course will culminate in a class project related to each student’s research interests.

Requisites: Senior or graduate standing, ME 240, ME 340, BME 315

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Fall 2017

B M E/PHM SCI 430 — BIOLOGICAL INTERACTIONS WITH MATERIALS
3 credits.

Addresses the range of materials currently being utilized for various biomedical applications, the biological systems governing biomaterial applications, analytical techniques pertinent to biomaterial evaluation, and selected major medical applications in which biomaterials play an important role.

Requisites: (BIOLOGY/ZOOLOGY/BIOLOGY 101 and 102, BIOLOGY/BOTANY/ZOOLOGY/BIOLOGY/BOTANY 151, ZOOLOGY 153, or BIOCORE 383) and (CHEM 341 or 343)

Repeatable for Credit: No

B M E/E C E 461 — MATHEMATICAL AND COMPUTER MODELING OF PHYSIOLOGICAL SYSTEMS
3 credits.

Mathematical and computer modeling of physiological systems; principal emphasis on cardiovascular system and individual nerve cells; other topics include respiratory system and skeletal-muscle system; extensive use of "hands-on" computer modeling using ACSL.

Requisites: ECE 330 or cons inst

Repeatable for Credit: No

Last Taught: Spring 2009

B M E/E C E 462 — MEDICAL INSTRUMENTATION
3 credits.

Requisites: ECE 342 or cons inst

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Fall 2017

B M E/E C E 463 — COMPUTERS IN MEDICINE
3 credits.

Study of microprocessor-based medical instrumentation. Emphasis on real-time analysis of electrocardiograms. Labs and programming project involve design of biomedical digital signal processing algorithms.

Requisites: ECE 330, Comp Sci 302

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

B M E 489 — HONORS IN RESEARCH
1-3 credits.

Undergraduate honors research projects supervised by faculty members. Not available for graduate credit.

Requisites: Admission to BME Undergraduate Honors in Research Program

Course Designation: Honors - Honors Only Courses (H)

Repeatable for Credit: Yes, unlimited number of completions

B M E/H ONCOL/MED PHYS/PHYSICS 501 — RADIOLOGICAL PHYSICS AND DOSIMETRY
3 credits.

Interactions and energy deposition by ionizing radiation in matter; concepts, quantities and units in radiological physics; principles and methods of radiation dosimetry.

Requisites: Calculus and modern physics

Course Designation: Level - Advanced

L&S Credit - Counts as Liberal Arts and Science credit in L&S

Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Fall 2017

B M E 505 — BIOFLUIDICS
3 credits.

Introduction to blood rheology, blood flow dynamics in arteries, capillaries and veins, airflow in the lungs, and other physiological flow phenomena. Healthy and diseased states will be considered. Special topics may include ocular flow dynamics and electro-chemical-fluidics in cartilage.

Requisites: EMA 201; EMA 202 or ME 240; PHYSIOL 335; or cons inst

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

B M E/CBE 510 — INTRODUCTION TO TISSUE ENGINEERING
3 credits.

Overview of tissue engineering, including discussion of cell sources, cell-material interactions, tailoring biomaterials, methods of culture and characterization of engineering tissues, ethical issues, concluding with case studies of specific types of tissue engineering. Optional laboratory exercises offered throughout semester.

Requisites: BME 430 or equiv, or cons inst

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Fall 2017
B M E 511 — TISSUE ENGINEERING LABORATORY
1 credit.

Tissue engineering refers to the generation of biological substitutes to restore, maintain, or improve tissue function. Laboratory techniques are multi-disciplinary, from basic biological sciences, engineering, and biotechnology. Engineering approaches and analysis will be applied to these techniques.
Requisites: BME 510 con reg or consent of instructor
Repeatable for Credit: No
Last Taught: Fall 2017

B M E 515 — THERAPEUTIC MEDICAL DEVICES
1 credit.

Design of medical devices to treat pathology. Open to majors in biomedical engineering. One lecture each week. Con reg in BME430
Requisites: BME 310, BME 315, PHYSIOLOGY 335.
Repeatable for Credit: No

B M E/BSE/CBE 517 — BIOLOGY IN ENGINEERING SEMINAR
1 credit.

Current topics at the interface of biology and engineering with special emphasis on the ways in which engineers have contributed to knowledge and advances in biology.
Requisites: Jr st in engr one college-level biol crse
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Fall 2017

B M E/CBE 520 — STEM CELL BIOENGINEERING
3 credits.

Covers engineering approaches that are used to understand and manipulate stem cells. Concepts covered include: introduction to stem cell biology, quantitative modeling of stem cell signaling, methods to engineer the stem cell microenvironment, and the role of stem cells in tissue development and regeneration.
Requisites: MATH 319 or 320, ZOOLOGY 470 or 570, CHEM 343, or cons inst
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2017

B M E/MED PHYS 530 — MEDICAL IMAGING SYSTEMS
3 credits.

2D Fourier image representation, sampling, and image filtering with applications in medical imaging. Principles of operation, impulse responses, signal-to-noise, resolution and design tradeoffs in projection radiography, tomography, nuclear medicine, ultrasound, and magnetic resonance imaging. Knowledge of linear signals systems, convolution, basic probability, ID Fourier Transforms
Requisites: ECE 330 or Med Phys 473 or equiv or cons inst.
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
B M E/CBE 560 — BIOCHEMICAL ENGINEERING
3 credits.
Properties of biological molecules; enzyme kinetics, enzyme reactors, and enzyme engineering; metabolic engineering; microbial growth kinetics; bioreactor design; bioseparations.
Requisites: CBE 310; CBE/B M E 320; Zoo 151 or 153; or consent of instructor
Repeatable for Credit: No
Last Taught: Fall 2017

B M E/I SY E 564 — OCCUPATIONAL ERGONOMICS AND BIOMECHANICS
3 credits.
Introduces engineers how to design manufacturing and industrial operations in which people play a significant role, so that human capabilities are maximized, physical stress is minimized, and workload is optimized. Examples and topics emphasize industrial applications.
Requisites: ISYE 349, or Biomed Engr 315, or Grad standing

B M E/MED PHYS 566 — PHYSICS OF RADIOTHERAPY
4 credits.
Ionizing radiation use in radiation therapy to cause controlled biological effects in cancer patients. Physics of the interaction of the various radiation modalities with body-equivalent materials, and physical aspects of clinical applications; lecture and lab.
Requisites: B M E/H ONCOL/MED PHYS/PHYSICS/B M E/H ONCOL/ MED PHYS 501
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No

B M E/MED PHYS 567 — THE PHYSICS OF DIAGNOSTIC RADIOLOGY
4 credits.
Physics of x-ray diagnostic procedures and equipment, radiation safety, general imaging considerations; lecture and lab.
Requisites: Modern physics, calculus, and Fourier analysis, or consent of instructor
Course Designation: Breadth - Biological Sci. Counts toward the Natural Sci req
Level - Intermediate
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2017

B M E/MED PHYS 568 — MAGNETIC RESONANCE IMAGING (MRI)
2 credits.
Core course covering the physics associated with magnetic resonance imaging emphasizing techniques employed in medical diagnostic imaging. Major MRI topics include: physics of MR, pulse sequences, hardware, imaging techniques, artifacts, and clinical applications. At the completion of this course, students should have an understanding of the technical and scientific details of modern magnetic resonance imaging and its use in diagnosing disease. Graduate students who have not taken MATH 222 and PHYSICS 202 at UW-Madison must have the equivalent coursework in order to be successful in this course.
Requisites: (MATH 222 and PHYSICS 202, 208, 241, 244, 248 or 249) or graduate or professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No

B M E/MED PHYS 573 — MEDICAL IMAGE SCIENCE: MATHEMATICAL AND CONCEPTUAL FOUNDATIONS
3 credits.
The conceptual and mathematical foundations of medical imaging, including both deterministic and stochastic aspects.
Requisites: 1 yr each of undergrad physics calc or cons inst
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2017

B M E/MED PHYS 574 — IMAGINE IN MEDICINE: APPLICATIONS
3 credits.
Continuation of 573, with application of concepts to practical medical imaging problems and emerging quantitative imaging techniques.
Requisites: B M E/MED PHYS/B M E 573
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No

B M E/MED PHYS 575 — DIAGNOSTIC ULTRASOUND IMAGING
2 credits.
Propagation of ultrasonic waves in biological tissues; principles of ultrasonic measuring and imaging instrumentation; design and use of currently available tools for performance evaluation of diagnostic instrumentation; biological effects of ultrasound.
Requisites: Graduate or professional standing or (MATH 234, 319, or 320 and PHYSICS 202 or 208)
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
B M E/MED PHYS 578 — NON-IONIZING DIAGNOSTIC IMAGING

3 credits.

This is a graduate level core course covering the physics associated with magnetic resonance imaging and diagnostic ultrasound emphasizing techniques employed in medical diagnostic imaging. Major MRI topics include: physics of MR, pulse sequences, hardware, imaging techniques, artifacts, and spectroscopic localization. Ultrasound based topics covered include: propagation of ultrasonic waves in biological tissues, principles of ultrasonic measuring and imaging instrumentation, design and use of currently available tools for performance evaluation of diagnostic instrumentation, and biological effects of ultrasound. At the completion of this course, students should have an understanding of the technical and scientific details of modern non-ionizing medical magnetic resonance and ultrasound devices and their use in diagnosing disease. Medical Physics 573 ("Imaging in Medicine") is useful but not a specific prerequisite.

Requisites: MATH 222, PHYSICS 202

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Spring 2017

B M E 601 — SPECIAL TOPICS IN BIOMEDICAL ENGINEERING

1-3 credits.

Enroll Info: Requisite varies by topic

Requisites: None

Repeatable for Credit: Yes, unlimited number of completions

Last Taught: Spring 2018

B M E/M E 603 — TOPICS IN BIO-MEDICAL ENGINEERING

1-3 credits.

Various aspects of living systems of interest to the mechanical engineer, such as the mechanics of hearing and vision, cardiac and central nervous systems, artificial organs, blood flow behavior, and energy-transfer processes.

Requisites: None

Repeatable for Credit: Yes, unlimited number of completions

Last Taught: Fall 2017

B M E 615 — TISSUE MECHANICS

3 credits.

This course will focus on solid mechanics of prominent musculoskeletal and cardiovascular tissues. Their normal and pathological behaviors (stiffness, strength, relaxation, creep, adaptive remodeling, etc.) in response to physiologic loading will be examined and quantified.

Requisites: BME 315 or cons inst

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Fall 2017

B M E/MED PHYS/PHMCOL-M/PHYSICS/RADIOL 619 — MICROSCOPY OF LIFE

3 credits.

Survey of state of the art microscopic, cellular and molecular imaging techniques, beginning with subcellular microscopy and finishing with whole animal imaging.

Requisites: PHYSICS 104, 202, 208, or 248 or MED PHYS/PHYSICS/MED PHYS 265

Course Designation: Level - Intermediate

L&S Credit - Counts as Liberal Arts and Science credit in L&S

Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Fall 2017

B M E/ CHEM/MED PHYS 650 — BIOLOGICAL OPTICAL MICROSCOPY

3 credits.

This course for graduate students will cover several aspects of state of the art biological and biophysical imaging. We will begin with an overview of geometrical optics and optical and fluorescence microscopy, with an emphasis on instrumentation. The bulk of the course will focus on advanced imaging techniques including nonlinear optical processes (multi-photon excitation, second harmonic generation, and stimulated Raman processes) and emerging super-resolution methods. Special emphasis will be given to current imaging literature and experimental design.

Requisites: Senior or Graduate standing, and CHEM 104 or 109 or 116 and, PHYSICS 104 or 202 or 208

Course Designation: Level - Advanced

L&S Credit - Counts as Liberal Arts and Science credit in L&S

Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

B M E/I SY E 662 — DESIGN AND HUMAN DISABILITY AND AGING

3 credits.

Design of products for persons with physical, sensory or cognitive impairments is covered as well as the design of standard mass market products. Interdisciplinary teams explore specific disabilities, then design a standard mass market product in competition with each other.

Requisites: Jr st or cons inst

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Spring 2016

B M E 699 — ADVANCED INDEPENDENT STUDY

1-5 credits.

Under faculty supervision.

Requisites: Consent of instructor

Course Designation: Level - Advanced

L&S Credit - Counts as Liberal Arts and Science credit in L&S

Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: Yes, unlimited number of completions
B M E 701 — SEMINAR IN BIOMEDICAL ENGINEERING
0 credits.

Speakers present current research, reviews of previous research, or topics of interest to biomedical engineering graduate students and faculty.

Requisites: Grad st in biomedical engineering

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: Yes, unlimited number of completions

B M E 702 — GRADUATE COOPERATIVE EDUCATION PROGRAM
1-2 credits.

Work experience that combines classroom theory with practical knowledge of operations to provide students with a background on which to develop and enhance a professional career. The work experience is tailored for MS students from within the U.S. as well as eligible international students.

Requisites: Graduate or professional standing

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: Yes, unlimited number of completions

B M E/MED PHYS 710 — ADVANCES IN MEDICAL MAGNETIC RESONANCE
3 credits.

This course studies in some depth the theory and applications of magnetic resonance (MR) in medicine. It provides the necessary theoretical background to understand advanced MR techniques including magnetic resonance imaging (MRI).

Requisites: B M E/MED PHYS/B M E 568

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Fall 2017

B M E/CBE 762 — BIOMEDICAL INSTRUMENTATION
3 credits.

Design and application of specialized biomedical instrumentation. Information retrieval techniques. Lab.

Requisites: ECE 462 or cons inst

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

B M E/C E 763 — PROJECTS IN COMPUTERS IN MEDICINE
3 credits.

Applications of digital computers to the solution of problems in clinical and research medicine. Hardware and software student projects.

Requisites: ECE 463

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Spring 2010

B M E/MED PHYS/PHYSICS 775 — ADVANCED ULTRASOUND PHYSICS
3 credits.

Foundations of acoustic wave equations, diffraction phenomena and acoustic beam formation, models for acoustic scattering from discrete structures and inhomogeneous continua, speckle statistics including speckle correlation, applications of these topics in medical imaging.

Requisites: Med Phys 575, PHYSICS 311, 322, 325, MATH 234, or cons inst

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

B M E 780 — METHODS IN QUANTITATIVE BIOLOGY
1 credit.

Focuses on understanding the key methods and principles of quantitative biology through a close reading of the primary literature. Topics covered will include deterministic and stochastic methods for modeling cellular systems, techniques in systems and synthetic biology, image processing tools and image analysis for biology, data-driven network models, genomic approaches, single-molecule approaches, and key computational biology tools. This course is intended for graduate students from a variety of backgrounds who are interested in pursuing quantitative biology during their graduate studies. Students who have a background in differential equations and linear algebra and cell biology will find themselves well prepared for this course.

Requisites: Graduate or professional standing

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

B M E/CBE 782 — MODELING BIOLOGICAL SYSTEMS
3 credits.

Literature survey of mathematical models in biology at the molecular and cellular levels; application of chemical kinetics and thermodynamics to biological systems; comparison of deterministic and stochastic strategies.

Requisites: MATH 319 or 320 or cons inst

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

B M E/CBE 783 — DESIGN OF BIOLOGICAL MOLECULES
3 credits.

Introduction to the methodologies for engineering the structure and function of biological molecules, especially proteins. Students will develop an understanding for the integration of computation and experiment to address biological molecular engineering problems.

Requisites: Biocore 303 or BIOCHEM 501 or ZOOLOGY 570; or cons inst

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Spring 2017
B M E 790 — MASTER'S RESEARCH AND THESIS
1-9 credits.

Under faculty supervision.
Requisites: Graduate standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions

B M E/PHM SCI 801 — SEMINAR ON DEVELOPMENT OF MEDICAL DEVICES AND DRUGS
1 credit.

An overview of three major sectors of medical product and technology development including pharmaceuticals, medical devices and combination products. Regulatory framework, disclosure and patenting, technical design and development strategy, academia-specific development challenges will be among the major lecture topics.
Requisites: Graduate or professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No

B M E 890 — PRE-DISSERTATION RESEARCH
1-9 credits.

Enroll Info: Under faculty supervision; for pre-dissertators only
Requisites: Graduate or professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions

B M E/B M I/BIOCHEM/CBE/COMP SCI/GENETICS 915 — COMPUTATION AND INFORMATICS IN BIOLOGY AND MEDICINE
1 credit.

Participants and outside speakers will discuss current research in computation and informatics in biology and medicine. This seminar is required of all CIBM program trainees.
Requisites: Consent of instructor
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions

B M E 990 — RESEARCH AND THESIS
1-9 credits.

Under faculty supervision. Enroll Info: For students with Dissertator status only
Requisites: Graduate or professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions

B M E 999 — ADVANCED INDEPENDENT STUDY
1-9 credits.

Under faculty supervision.
Requisites: Consent of instructor
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions