B M I/POP HLTH 451 — INTRODUCTION TO SAS PROGRAMMING FOR POPULATION HEALTH
2 credits.
Use of the SAS programming language for the management and analysis of biomedical data.
Requisites: Pop Hlth grad student or consent of instructor
Repeatable for Credit: No
Last Taught: Fall 2017

B M I/STAT 511 — INTRODUCTION TO BIOSTATISTICAL METHODS FOR PUBLIC HEALTH
3 credits.
Provides breadth in biostatistical methods for public health practitioners. Topics will include research design, data collection methods and database management, statistical computing and programming, descriptive statistics in tables and graphics, introductory statistical methods, and survey sampling. Not open to students who have taken BMI/STAT/B M I 541 or BMI/POP HLTH/B M I 551
Requisites: Declared in the Master of Public Health (MPH) program.
Repeatable for Credit: No
Last Taught: Fall 2017

B M I/STAT 541 — INTRODUCTION TO BIOSTATISTICS
3 credits.
Course designed for the biomedical researcher. Topics include: descriptive statistics, hypothesis testing, estimation, confidence intervals, t-tests, chi-squared tests, analysis of variance, linear regression, correlation, nonparametric tests, survival analysis and odds ratio. Biomedical applications used for each topic. Students may not enroll if they have completed BMI 511 or BMI 551.
Requisites: Graduate standing.
Repeatable for Credit: No
Last Taught: Fall 2017

B M I/STAT 542 — INTRODUCTION TO CLINICAL TRIALS I
3 credits.
Intended for biomedical researchers interested in the design and analysis of clinical trials. Topics include definition of hypotheses, measures of effectiveness, sample size, randomization, data collection and monitoring, and issues in statistical analysis. Statistics graduate students should take STAT/B M I 641.
Requisites: STAT/B M I 541 or equiv or cons inst
Repeatable for Credit: No
Last Taught: Spring 2017

B M I 544 — INTRODUCTION TO CLINICAL TRIALS II
3 credits.
Intended for biomedical researchers, focuses on design, implementation, and conduct of clinical trials. Topics include: regulatory requirements; data collection; data quality and management; budgets; federal, institutional, and sponsor-defined requirements; establishment of research infrastructures; preparation of investigator-INDs; investigator responsibilities.
Requisites: BMI 541 or equiv BMI 542 cons inst
Repeatable for Credit: No
Last Taught: Fall 2017

B M I/STAT 546 — PRACTICUM IN CLINICAL TRIAL DATA ANALYSIS AND INTERPRETATION
3 credits.
Provides practice in analysis and interpretation of existing datasets from national and international clinical trials in a variety of diseases. Students will develop a research question, review clinical protocols, and analyze available data to prepare a report.
Requisites: STAT/B M I 541 or 572 STAT/B M I 542 or 641
Repeatable for Credit: No
Last Taught: Summer 2015

B M I/POP HLTH 551 — INTRODUCTION TO BIOSTATISTICS FOR POPULATION HEALTH
3 credits.
Course designed for population health researcher. Topics include descriptive statistics, elementary probability, probability distributions, one- and two-sample normal inference (point estimation, hypothesis testing, confidence intervals), power and sample size calculations, one- and two-sample binomial inference, underlying assumptions and diagnostic work.
Requisites: Declared in the Population Health or Epidemiology graduate program; not open to students who have taken BMI/STAT/B M I 511 or BMI/STAT/B M I 541
Repeatable for Credit: No
Last Taught: Fall 2017

B M I/POP HLTH 552 — REGRESSION METHODS FOR POPULATION HEALTH
3 credits.
Introduction to the primary statistical tools used in epidemiology and health services research; multiple linear regression, logistic regression and survival analysis.
Requisites: Pop Hlth/BMI 451 and Pop Hlth/BMI 551 ; or cons inst
Repeatable for Credit: No
Last Taught: Spring 2017
Biostatistics and Medical Informatics (B M I)

B M I/COMP SCI 567 — MEDICAL IMAGE ANALYSIS
3 credits.

Present introductory medical image processing and analysis techniques. Topics include medical imaging formats, segmentation, registration, image quantification, classification. Strongly encourage Matlab experience, such as COMP SCI 310 or 368-Matlab.

Requisites: (MATH 320 or 340) and (B M I/STAT/B M I 511, 541, B M I/POP HLTH/B M I 551, STAT 324, 371, or FW ECOL/HORT/STAT/ F&W ECOL/HORT 571) or graduate or professional standing
Repeatable for Credit: No
Last Taught: Spring 2017

B M I/COMP SCI 576 — INTRODUCTION TO BIOINFORMATICS
3 credits.

Algorithms for computational problems in molecular biology. The course will study algorithms for problems such as: genome sequencing and mapping, pairwise and multiple sequence alignment, modeling sequence classes and features, phylogenetic tree construction, and gene-expression data analysis.

Requisites: (COMP SCI 300 or 367) and MATH 222 or graduate or professional standing
Repeatable for Credit: No
Last Taught: Fall 2017

B M I/BIOCHEM/BMOLCHEM/MATH 606 — MATHEMATICAL METHODS FOR STRUCTURAL BIOLOGY
3 credits.

Intended to provide a rigorous foundation for mathematical modeling of biological structures. Mathematical techniques include ordinary and partial differential equations, 3D Fourier analysis and optimization. Biological applications include protein folding, molecular dynamics, implicit solvent electrostatics, and molecular interactions.

Requisites: (MATH 234 or 320) and (COMP SCI 301 or 302)
Repeatable for Credit: No
Last Taught: Fall 2016

B M I/BIOCHEM/BMOLCHEM/MATH 609 — MATHEMATICAL METHODS FOR SYSTEMS BIOLOGY
3 credits.

Intended to provide a rigorous foundation for mathematical modeling of biological systems. Mathematical techniques include dynamical systems and differential equations. Applications to biological pathways, including understanding of bistability within chemical reaction systems, are emphasized.

Requisites: MATH 340 or 341; MATH 415, or cons inst
Repeatable for Credit: No
Last Taught: Spring 2016

B M I/I SY E/L I S 617 — HEALTH INFORMATION SYSTEMS
3 credits.

Provides grounding in core concepts of health information systems. Major applications include clinical information systems, language and standards, decision support, image technology and digital libraries. Evaluation of IE tools and perspectives designed to improve the quality, efficiency and effectiveness of health information.

Requisites: I SY E 417
Repeatable for Credit: No
Last Taught: Spring 2016

B M I/STAT 641 — STATISTICAL METHODS FOR CLINICAL TRIALS
3 credits.

Statistical issues in the design of clinical trials, basic survival analysis, data collection and sequential monitoring. Intended for statistics graduate students; those with medical backgrounds should take STAT/ B M I 542.

Requisites: Math/STAT/MATH 310 or equiv or cons inst
Repeatable for Credit: No
Last Taught: Spring 2017

B M I/STAT 642 — STATISTICAL METHODS FOR EPIDEMIOLOGY
3 credits.

Methods for analysis of case-control, cross sectional, and cohort studies. Covers epidemiologic study design, measures of association, rates, classical contingency table methods, and logistic and Poisson regression.

Requisites: Statistics 310 or equivalent or consent of instructor
Repeatable for Credit: No
Last Taught: Fall 2017

B M I/POP HLTH 651 — ADVANCED REGRESSION METHODS FOR POPULATION HEALTH
3 credits.

Extension of regression analysis to observational data with unequal variance, unequal sampling and propensity weights, clusters and longitudinal measurements, using different variance structures, mixed linear models, generalized linear models and GEE. Matrix notation will be introduced and underlying mathematical and statistical principles will be explained. Examples use data sets from ongoing population health research.

Requisites: POP HLTH 798 and POP HLTH/B M I 552; or cons inst
Repeatable for Credit: No
Last Taught: Fall 2016

B M I/POP HLTH 652 — TOPICS IN BIOSTATISTICS FOR EPIDEMIOLOGY
1-3 credits.

Each module will adopt an in-depth focus on a biostatistical method of particular relevance to epidemiology such as measurement error, missing data, intermediate variables, complex study designs, meta-analysis, splines, propensity scores, causal inference, spatial statistics and resampling. One or more modules will be offered every spring semester.

Requisites: B M I/POP HLTH/B M I 551, B M I/POP HLTH/B M I 552, and (STAT 850 or B M I/POP HLTH/B M I 651)
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2015

B M I 699 — INDEPENDENT STUDY
1-3 credits.

Directed study to pursue knowledge beyond curriculum.

Requisites: Jr st or cons inst
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Fall 2017
B M I/STAT 741 — SURVIVAL ANALYSIS THEORY AND METHODS
3 credits.
Theory and practice of analytic methods for censored survival data, including nonparametric and parametric methods, the proportional hazards regression model, and a review of current topics in survival analysis.
Requisites: STAT 610 or 710 or equivalent or consent of instructor
Repeatable for Credit: No
Last Taught: Fall 2017

B M I/COMP SCI 767 — COMPUTATIONAL METHODS FOR MEDICAL IMAGE ANALYSIS
3 credits.
Study of computational techniques that facilitate automated analysis, manipulation, denoising, and improvement of large-scale and high resolution medical images. Design and implementation of methods from computer Vision and Machine Learning to efficiently process such image data to answer biologically and clinically meaningful scientific questions. Students are strongly encouraged to have programming skills and basic proficiency in calculus and linear algebra, such as MATH 340.
Requisites: Graduate or professional standing
Repeatable for Credit: No
Last Taught: Fall 2016

B M I/STAT 768 — STATISTICAL METHODS FOR MEDICAL IMAGE ANALYSIS
3 credits.
Introduce key statistical methods and concepts for analyzing various medical images. Analyze publicly available and student/instructor supplied imaging data using the most up-to-date methods and tools.
Aimed at graduate student and researchers with strong quantitative background. The course is self-contained. The knowledge of calculus and linear algebra is needed
Requisites: Two semesters of statistics courses (STAT/MATH 309-310), or the consent of instructor.
Repeatable for Credit: No
Last Taught: Fall 2013

B M I 773 — CLINICAL RESEARCH INFORMATICS
3 credits.
Course will familiarize students with basic informatics principles and techniques to support clinical research. Content includes information systems for protocol design; regulatory compliance; approaches for patient recruitment; efficient protocol management; data collection and acquisition; data security, storage, transfer, processing and analysis.
Requisites: Graduate or professional standing
Repeatable for Credit: No
Last Taught: Spring 2017

B M I/COMP SCI 776 — ADVANCED BIOINFORMATICS
3 credits.
Advanced course covering computational problems in molecular biology. The course will study algorithms for problems such as: modeling sequence classes and features, phylogenetic tree construction, gene-expression data analysis, protein and RNA structure prediction, and whole-genome analysis and comparisons.
Requisites: Graduate or professional standing
Repeatable for Credit: No
Last Taught: Spring 2017

B M I 826 — SPECIAL TOPICS IN BIOSTATISTICS AND BIOMEDICAL INFOMATICS
1-3 credits.
Covers advanced topics in the areas of biostatistics and biomedical informatics. Includes reading and discussion of original literature and individual student projects.
Requisites: Graduate or professional standing
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Fall 2017

B M I/COMP SCI/PSYCH 841 — COMPUTATIONAL COGNITIVE SCIENCE
3 credits.
Studies the biological and computational basis of intelligence, by combining methods from cognitive science, artificial intelligence, machine learning, computational biology, and cognitive neuroscience.
Requires ability to program.
Requisites: Graduate or professional standing
Repeatable for Credit: No
Last Taught: Fall 2017

B M I/STAT 877 — STATISTICAL METHODS FOR MOLECULAR BIOLOGY
3 credits.
Develop statistical problems in gene mapping, high throughputomic data analysis, phylogenetics and sequence analysis. Introduce ideas of key methods using published data. Statisticians learn statistical basis for research methodology. Collaboration among students and with biologists is encouraged through projects. GENETICS 466 or equiv strongly recommended
Requisites: STAT/MATH 309-310 or 609-610 or 709-710 or equiv, or cons inst.
Repeatable for Credit: No
Last Taught: Spring 2017

B M I 899 — PRE-DISSERTATOR RESEARCH
1-3 credits.
Pre-dissertation Research. Course is open to pre-dissertation students only.
Requisites: Graduate or professional standing
Repeatable for Credit: No
Last Taught: Fall 2017
B M I/B M E/BIOCHEM/CBE/COMP SCI/GENETICS 915 — COMPUTATION AND INFORMATICS IN BIOLOGY AND MEDICINE
1 credit.

Participants and outside speakers will discuss current research in computation and informatics in biology and medicine. This seminar is required of all CIBM program trainees.

Requisites: Consent of instructor
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Fall 2017

B M I/MEDICINE 918 — HEALTH INFORMATICS FOR MEDICAL STUDENTS
2 credits.

Explore medical informatics as a new way to practice medicine with applications to patient care, electronic medical records, and patient safety.

Requisites: Basic computer literacy 4th yr Med st or cons inst
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Fall 2017

B M I 990 — DISSERTATOR RESEARCH
1-3 credits.

Dissertator Research. Course is open to dissertators only.
Requisites: Graduate or professional standing
Repeatable for Credit: Yes, unlimited number of completions