<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Requisites</th>
<th>Repeatable for Credit:</th>
<th>Last Taught:</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSE 1</td>
<td>COOPERATIVE EDUCATION PROGRAM</td>
<td>1</td>
<td>Work experience which combines classroom theory with practical knowledge of operations to provide students with a background upon which to base a professional career.</td>
<td>So st</td>
<td>Yes, unlimited number of completions</td>
<td>Summer 2017</td>
<td></td>
</tr>
<tr>
<td>BSE 201</td>
<td>LAND SURVEYING FUNDAMENTALS</td>
<td>1</td>
<td>Basic surveying terminology, equipment, note keeping, computations and data presentation. Emphasis on differential leveling, radial topographic surveying and radial stakeout using a total station survey instrument.</td>
<td>So st, cons inst</td>
<td>No</td>
<td>Fall 2016</td>
<td></td>
</tr>
<tr>
<td>BSE 216</td>
<td>IRRIGATION SYSTEMS - DESIGN AND USE</td>
<td>1</td>
<td>Effect of irrigation development on agricultural and environmental characteristics of areas. Introduction to irrigation system component selection and effective utilization of irrigation systems.</td>
<td>SOIL SCI 301</td>
<td>No</td>
<td>Spring 2008</td>
<td></td>
</tr>
<tr>
<td>BSE 243</td>
<td>OPERATING AND MANAGEMENT PRINCIPLES OF OFF-ROAD VEHICLES</td>
<td>3</td>
<td>Principles of operation of internal combustion engines, fuel metering, cooling, lubrication, clutches, mechanical and hydrostatic transmissions, final drives, hydraulics systems and traction systems. Selection and management of off-road vehicles for agriculture, construction, lawncare and turfgrass industries. Not recommended for stdts in engineering.</td>
<td>MATH 112 or 114</td>
<td>No</td>
<td>Spring 2015</td>
<td></td>
</tr>
<tr>
<td>BSE 249</td>
<td>ENGINEERING PRINCIPLES FOR BIOLOGICAL SYSTEMS</td>
<td>3</td>
<td>Applications of basic engineering principles such as mass and energy balances, psychrometric heat and mass transfer and fluid flow to problems encountered in agricultural and biological systems including grain conditioning, fruit and vegetable storage, food processing, animal housing, and environmental control.</td>
<td>MATH 221</td>
<td>No</td>
<td>Fall 2016</td>
<td></td>
</tr>
<tr>
<td>BSE 270</td>
<td>INTRODUCTION TO COMPUTER AIDED DESIGN</td>
<td>3</td>
<td>Introduction to computer aided design (CAD) concepts and techniques, including two- and three-dimensional drawing presentation, methods of graphic communication and design synthesis. Specific topics include parametric solid modeling, part design, survey data and surface construction, orthographic drawings, dimensioning rules and drawing standards, assemblies, and animation.</td>
<td>None</td>
<td>Yes, unlimited number of completions</td>
<td>Fall 2016</td>
<td></td>
</tr>
<tr>
<td>BSE 289</td>
<td>HONORS INDEPENDENT STUDY</td>
<td>1-2</td>
<td>Open to Freshmen</td>
<td>Enrolled in the CALS Honors Prgm Jr or So st.</td>
<td>No</td>
<td>Summer 2017</td>
<td></td>
</tr>
<tr>
<td>BSE 299</td>
<td>INDEPENDENT STUDY</td>
<td>1-3</td>
<td>Open to Freshmen</td>
<td>Freshmen, Sophomore or Junior standing written consent of instructor.</td>
<td>Yes, unlimited number of completions</td>
<td>Summer 2017</td>
<td></td>
</tr>
<tr>
<td>BSE 308</td>
<td>CAREER MANAGEMENT FOR ENGINEERS</td>
<td>1</td>
<td>Information to aid engineers in career decision making including: personal time and fiscal management, job selection, career development, leadership, legal aspects of engineering, professional ethics.</td>
<td>None</td>
<td>Yes, unlimited number of completions</td>
<td>Fall 2016</td>
<td></td>
</tr>
<tr>
<td>BSE 349</td>
<td>QUANTITATIVE TECHNIQUES FOR BIOLOGICAL SYSTEMS</td>
<td>3</td>
<td>Principles of how energy and materials are utilized in Cells, organisms and ecosystems. Mass transfer heat and energy balances applied to cell metabolism, plants, and ecosystems. Quantification of biological processes to allow manipulation for human benefit.</td>
<td>MATH 222, CHEM 104 or CHEM 109, introductory biology crse, 1 yr of high school physics, or cons inst</td>
<td>No</td>
<td>Spring 2017</td>
<td></td>
</tr>
</tbody>
</table>
BSE 351 — STRUCTURAL DESIGN FOR AGRICULTURAL FACILITIES
3 credits.
Introduction to agricultural building codes and loads; structural analysis; wood, concrete and soil properties; wood and reinforced concrete design; construction specifications.
Requisites: EMA 201
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2016

BSE/DS 356/LAND ARC 356 — SUSTAINABLE RESIDENTIAL CONSTRUCTION
3 credits.
Properties and use of building materials, framing systems, HVAC systems, code requirements, conservation of natural resources in building construction and operation.
Requisites: MATH 112, 114, or 171
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2016

BSE 364 — ENGINEERING PROPERTIES OF FOOD AND BIOLOGICAL MATERIALS
3 credits.
Study of various physical, mechanical, thermal and other properties of food and biological materials. Importance of such property values on the design and operation of various food and bioprocess engineering systems.
Requisites: BSE 249 ME 361 or ChE 310, or cons inst
Course Designation: Breadth - Physical Sci. Counts toward the Natural Sci req
Repeatable for Credit: No
Last Taught: Spring 2017

BSE 365 — MEASUREMENTS AND INSTRUMENTATION FOR BIOLOGICAL SYSTEMS
3 credits.
Principles of instrumentation and measurement systems, analysis of experimental data, electronic components, instrumentation for measuring various parameters of biological systems (temperature, force, flow).
Requisites: Declared in Biological Systems Engineering and STAT 224 or 301 or 324 and PHYSICS 202
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2017

BSE/ENVIR ST 367 — RENEWABLE ENERGY SYSTEMS
3 credits.
Students will learn about the state-of-the-art in renewable energy applications including biomass for heat, electric power and liquid fuels as well as geo-energy sources such as wind, solar, and hydro power. Students will do engineering calculations of power and energy availability of renewable energy sources and learn about requirements for integrating renewable energy sources into production, distribution and end-use systems.
Requisites: College algebra, college-level physical science course
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2017

BSE/CIV ENGR/SOIL SCI 372 — ON-SITE WASTE WATER TREATMENT AND DISPERSAL
2 credits.
On-site treatment and dispersal of waste water from homes, commercial sources and small communities. Sources, pretreatment units, nutrient removal units, constructed wetlands, surface and soil dispersal systems, recycle and reuse systems, regulations, alternative collection systems.
Requisites: CHEM 103
Repeatable for Credit: No
Last Taught: Fall 2016

BSE 375 — SPECIAL TOPICS
1-4 credits.
Requisites: Cons inst
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2017

BSE 399 — COORDINATIVE INTERNSHIP/COOPERATIVE EDUCATION
1-8 credits.
Requisites: So or Jr or Sr st cons supvsng inst intrshp progm coordinator advisor
Course Designation: Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Summer 2017

BSE 400 — STUDY ABROAD IN BIOLOGICAL SYSTEMS ENGINEERING
1-6 credits.
Provides an area equivalency for courses taken on Madison Study Abroad Programs that do not equate to existing UW courses. W.-Madison Study Abroad Program
Requisites: Current registration in a U.
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2012

BSE/FOOD SCI/M E 441 — RHEOLOGY OF FOODS AND BIOMATERIALS
3 credits.
Fundamentals of rheology and rheological evaluations of food and biomaterials; structure-function relationships.
Requisites: PHYSICS 201 or CBE/B M E 320 or ME 363 or cons inst
Repeatable for Credit: No
Last Taught: Spring 2016
BSE 460 — BIOREFINING: ENERGY AND PRODUCTS FROM RENEWABLE RESOURCES
3 credits.

Concepts, processes, status quo and future direction of biorefining for production of energy (fuels), chemicals and materials from biomass, with emphases on chemical, biological and engineering aspects of the biorefining.

Requisites: CHEM 109 or equiv; organic chem or equiv
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2016

BSE 461 — FOOD AND BIOPROCESSING OPERATIONS
3 credits.

Principles of mechanics, fluid dynamics, and heat and mass transfer as applied to food and bioprocessing operations. Specific focus on unit operations and equipment associated with the products key to Wisconsin industries including pulp and paper, dairy products, ethanol, forage, and grain.

Requisites: (BSE 249 or CBE 250) and (CIV ENGR 310 or CBE/B ME 320 or ME 363) and declared in Biological Systems, Biomedical, Chemical, Civil, Computer, Electrical, Geological, Industrial, Mechanical, Nuclear Engineering, Engineering Physics, Engineering Mechanics, Materials Science and Engineering, or graduate standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2017

BSE 464 — HEAT AND MASS TRANSFER IN BIOLOGICAL SYSTEMS
3 credits.

Introduction to heat and mass transfer fundamentals, including transport mechanisms of conduction, convection, radiation, diffusion and evaporation. Development of governing equations and boundary conditions with application to living systems, controlled environments, water systems, and food processing. Introduction to, and application of, finite-difference and finite-volume methods, including computational fluid dynamics (CFD).

Requisites: M E 361, CBE 310 or an equivalent Thermodynamics course; M E 363, CBE/B M E 320, CEE 310 or an equivalent Fluid Mechanics course
Repeatable for Credit: No
Last Taught: Spring 2017

BSE 472 — SEDIMENT AND BIO-NUTRIENT ENGINEERING AND MANAGEMENT
3 credits.

Hydrologic, biologic and engineering applications in the design and management of sediment and bio-nutrient control systems.

Requisites: Jr st in Engr or cons inst
Repeatable for Credit: No
Last Taught: Spring 2017

BSE 473 — IRRIGATION AND DRAINAGE SYSTEMS DESIGN
2 credits.

Engineering and management applications of soil-plant-water relationships applied to drainage and irrigation design.

Requisites: Jr st in Engr or cons inst
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2015

BSE/M E 475 — ENGINEERING PRINCIPLES OF AGRICULTURAL MACHINERY
3 credits.

Engineering design principles of machines for the production, processing and handling of crops for food, fuel, bio-mass and fiber. Environmental and biological factors that influence machine design and operation. Economic and capacity analysis of machines and systems.

Requisites: Declared in Biological Systems Engineering or Mechanical Engineering and EMA 202 or ME 240 or graduate standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2016

BSE/M E 476 — ENGINEERING PRINCIPLES OF OFF-ROAD VEHICLES
3 credits.

Engineering design principles of heavy-duty vehicles intended for off-road use: fuels, engine cycles, engine principles and construction, clutches, mechanical and hydrostatic transmissions, final drives, traction systems, traction modeling, dynamic behavior, suspension systems and braking.

Requisites: Declared in Biological Systems Engineering or Mechanical Engineering and M E 361, EMA 202 or ME 240; or graduate standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2017

BSE/CIV ENGR 491 — LEGAL ASPECTS OF ENGINEERING
3 credits.

Legal principles and institutions germane to engineering practice; formation and performance of engineer-client and owner-contractor relationships; preparation of technical specifications; surety bonds and insurance; construction liens; contract administration; construction contract remedies; intellectual property of engineers; engineers' obligations to society and their fellow engineers.

Requisites: Sr st or cons inst
Repeatable for Credit: No
Last Taught: Fall 2016
BSE 508 — BIOLOGICAL SYSTEMS ENGINEERING DESIGN PRACTICUM I
2 credits.
Overview of the engineering design process including problem identification, information retrieval, specification writing, development and analysis of alternative solutions, selection methodology, product safety, standardization, scheduling and cost estimating. Students develop design project proposals for real-world design problems.
Requisites: Junior standing
Repeatable for Credit: No
Last Taught: Spring 2017

BSE 509 — BIOLOGICAL SYSTEMS ENGINEERING DESIGN PRACTICUM II
3 credits.
Individual or team work on a biological systems engineering design project: problem identification, information retrieval, specification writing, development and analysis of alternative solutions, selection methodology.
Requisites: Senior standing, declared in Biological Systems Engineering and BSE 508
Repeatable for Credit: No
Last Taught: Fall 2016

BSE/BME/CBE 517 — BIOLOGY IN ENGINEERING SEMINAR
1 credit.
Current topics at the interface of biology and engineering with special emphasis on the ways in which engineers have contributed to knowledge and advances in biology.
Requisites: Jr st in engr one college-level biol crse
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Fall 2016

BSE/FOOD Sci 542 — FOOD ENGINEERING OPERATIONS
4 credits.
Lectures and experiments in food engineering operations selected from topics such as: thermodynamics, transport processes, biological kinetics and bioreactor design, thermal process calculations, separation processes, process instrumentation and control, process design and economics, and the use of computers.
Requisites: FOOD Sci 440, Sr st, or cons inst
Course Designation: Gen Ed - Quantitative Reasoning Part B
Breadth - Biological Sci. Counts toward the Natural Sci req
Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Repeatable for Credit: No
Last Taught: Spring 2010

BSE 571 — SMALL WATERSHED ENGINEERING
3 credits.
Application of engineering principles to small, ungaged watershed analysis. Application of hydrologic and sedimentologic principles to upland watersheds for run-off and sediment control.
Requisites: Sr in Engr or Grad st or cons inst
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2017

BSE/FOOD Sci 642 — FOOD AND PHARMACEUTICAL SEPARATIONS
2-3 credits.
Basic principles of production-scale separation processes in the food and pharmaceutical industries including gravity sedimentation and centrifugation, extraction, adsorption, chromatography, precipitation, conventional and membrane filtration, crystallization, and drying. Third credit adds group term project, integrating principles with experiments, defined by students' interests.
Requisites: Consent of instructor
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2017

BSE 671 — TOPICS IN NATURAL RESOURCES ENGINEERING
1-3 credits.
Advanced topics in natural resource engineering.
Requisites: St or Grad st
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Fall 2013

BSE 681 — SENIOR HONORS THESIS
2-4 credits.
Requisites: Hon candidacy
Course Designation: Honors - Honors Only Courses (H)
Repeatable for Credit: Yes, unlimited number of completions

BSE 682 — SENIOR HONORS THESIS
2-4 credits.
Continuation of 681.
Requisites: Honors program candidacy BSE 681
Course Designation: Honors - Honors Only Courses (H)
Repeatable for Credit: No

BSE 691 — SENIOR THESIS
2 credits.
Requisites: Sr st cons inst
Repeatable for Credit: Yes, unlimited number of completions

BSE 692 — SENIOR THESIS
2 credits.
Repeatable for Credit: Yes, unlimited number of completions

BSE 699 — SPECIAL PROBLEMS
1-4 credits.
Requisites: Sr st cons inst
Course Designation: Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Summer 2017
BSE 799 — PRACTICUM IN AGRICULTURAL ENGINEERING TEACHING
1-3 credits.

Requisites: Grad st cons inst
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2017

BSE 875 — SPECIAL TOPICS
1-4 credits.

Requisites: Grad st and cons inst
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2017

BSE 900 — SEMINAR
1 credit.

Requisites: Cons inst
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Fall 2016

BSE 901 — GRADUATE RESEARCH SEMINAR
1 credit.

Presentation and evaluation of graduate student thesis and non-thesis research.
Requisites: BSE 900
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2017

BSE 990 — RESEARCH
1-12 credits.

Requisites: Cons inst
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Summer 2017

BSE 999 — SPECIAL PROBLEMS
1-3 credits.

Requisites: Cons inst
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Summer 2017