The goal of the graduate program is to prepare capable and creative astronomers for careers in research and education. The granting of the Ph.D. degree indicates that the recipient has a mastery of the knowledge and techniques of modern astrophysics. A Ph.D. candidate is expected to be both knowledgeable of problems at the frontiers of astrophysical research and able to carry out independent forefront research in a specialized area. Candidates are required to gain experience as teaching assistants and are encouraged to work with a variety of faculty and research staff members during the first two years of study.

The Department of Astronomy offers the doctor of philosophy in astronomy. Although a master’s degree is offered, students generally are not admitted for a terminal master’s degree.

The department has a long-standing reputation as one of the finest graduate astronomy and astrophysics programs in the United States. The program provides each student with a broad knowledge of modern observational and theoretical astrophysics, while emphasizing the development of independent research skills. Beginning with the first year in the program, graduate students play an active role in the department’s research programs and have access to all research facilities. As teaching assistants, they also acquire experience as astronomy educators.

The faculty are engaged in a broad range of observational and theoretical research. Topics of study include dynamical phenomena of massive stars; binary star evolution; dynamics of star clusters and star forming regions; compact objects; the interstellar and intergalactic medium; star formation; plasma astrophysics; computational fluid mechanics; magnetic fields; turbulence; the structure, kinematics, and stellar populations of nearby galaxies; active galactic nuclei; galactic winds and chemical evolution; galaxy clusters; galaxy formation and evolution; the star formation and black hole accretion history of the universe; and the development of innovative astronomical instrumentation. More information is available on the department website.

RESEARCH FACILITIES

Astronomical observations at UW–Madison trace their origin to the 15-inch refractor of Washburn Observatory, founded on the campus in 1878, and still open for public viewing. Wisconsin subsequently pioneered a multi-wavelength approach to astronomical observation. Faculty, research staff, and students are frequent observers on X-ray, ultraviolet, optical, infrared, radio, and submillimeter telescopes around the globe and in space. The department currently participates in the operation of a number of research-class observing facilities and is actively engaged in the development of cutting-edge instrumentation.

The university is a major partner in the WIYN telescope, an advanced technology 3.5m telescope at Kitt Peak, Arizona, optimized for wide-field imaging and spectroscopy, and in the 11m Southern African Large Telescope (SALT), the largest single aperture optical telescope in the Southern Hemisphere. The university is also a partner in the Sloan Digital Sky Survey IV, a massive spectroscopic survey of the distant Universe, nearby galaxies, and stars in the Milky Way. The department is actively involved in ASKAP and MEERKAT, precursor experiments for an array of radio telescopes one square kilometer in size.

The department has a long history of developing astronomical instrumentation for both ground and space-based facilities. Current efforts center on the development of a near-infrared arm for the Robert Stobie Spectrograph on SALT, and the design and testing of fiber bundle arrays for the Sloan Digital Sky Survey IV. UW scientists are also continuing to develop and operate the Wisconsin H-Alpha Mapper (WHAM), a uniquely powerful instrument dedicated to the study of the warm ionized gas in the Milky Way, and an innovative and highly successful Star Tracker for sounding rocket and balloon-borne experiments. Technical support is provided by in-house electronics and machine shops.

The theory group maintains a variety of facilities to support numerical simulations. The main workhorse is a T2-node, 576-core cluster optimized for tightly coupled problems, such as hydrodynamics and magneto-hydrodynamics. A number of smaller clusters are used for development, analysis and three-dimensional visualization.

ADMISSIONS

To enter as a graduate student, an applicant must have undergraduate preparation that includes at least three years of college physics and mathematics through differential equations. Applicants are judged on the basis of previous academic record, letters of recommendation, personal statement, research experience, and Graduate Record Exam (GRE) scores. Admission is competitive and is for the fall only.

Applicants for admission must submit the following via the Graduate School online application:

- Transcripts of all undergraduate work
- Statement on reasons for graduate study in astronomy
- Three letters of recommendation from people well acquainted with past academic work
- Graduate Record Exam (GRE) scores (general test)
- International students must submit scores from the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS)

Financial support is provided through university fellowships (incoming graduate students only) or department assistantships. To compete for fellowships awarded by the university, students must submit all application materials (including the GRE scores) via the online Graduate School Application by December 31.

GRADUATE SCHOOL ADMISSIONS

Graduate admissions is a two-step process between academic degree programs and the Graduate School. Applicants must meet requirements of both the program(s) and the Graduate School. Once you have researched the graduate program(s) you are interested in, apply online (https://grad.wisc.edu/admissions).

FUNDING

GRADUATE SCHOOL RESOURCES

Resources to help you afford graduate study might include assistantships, fellowships, traineeships, and financial aid. Further funding information (https://grad.wisc.edu/funding) is available from the Graduate School. Be sure to check with your program for individual policies and processes related to funding.
REQUIREMENTS

MINIMUM GRADUATE SCHOOL REQUIREMENTS

Review the Graduate School minimum academic progress and degree requirements (http://guide.wisc.edu/graduate/#policiesandrequirementstext), in addition to the program requirements listed below.

MAJOR REQUIREMENTS

MODE OF INSTRUCTION

<table>
<thead>
<tr>
<th>Face to Face</th>
<th>Evening/Weekend</th>
<th>Online</th>
<th>Hybrid</th>
<th>Accelerated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Mode of Instruction Definitions

- **Evening/Weekend:** These programs are offered in an evening and/or weekend format to accommodate working schedules. Enjoy the advantages of on-campus courses and personal connections, while keeping your day job. For more information about the meeting schedule of a specific program, contact the program.

- **Online:** These programs are offered primarily online. Many available online programs can be completed almost entirely online with all online programs offering at least 50 percent or more of the program work online. Some online programs have an on-campus component that is often designed to accommodate working schedules. Take advantage of the convenience of online learning while participating in a rich, interactive learning environment. For more information about the online nature of a specific program, contact the program.

- **Hybrid:** These programs have innovative curricula that combine on-campus and online formats. Most hybrid programs are completed on-campus with a partial or completely online semester. For more information about the hybrid schedule of a specific program, contact the program.

- **Accelerated:** These on-campus programs are offered in an accelerated format that allows you to complete your program in a condensed time-frame. Enjoy the advantages of on-campus courses with minimal disruption to your career. For more information about the accelerated nature of a specific program, contact the program.

CURRICULAR REQUIREMENTS

<table>
<thead>
<tr>
<th>Minimum Credit Requirement</th>
<th>51 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Residence Credit Requirement</td>
<td>32 credits</td>
</tr>
<tr>
<td>Minimum Graduate Coursework Requirement</td>
<td>Half of degree coursework (26 credits out of 51 total credits) must be completed graduate-level coursework; courses with the Graduate Level Coursework attribute are identified and searchable in the university’s Course Guide (https://registrar.wisc.edu/course-guide/).</td>
</tr>
<tr>
<td>Overall Graduate GPA Requirement</td>
<td>3.00 GPA required.</td>
</tr>
</tbody>
</table>

Other Grade Requirements

A GPA of at least 3.0 is required in the core (required) courses and a student may have no more than 3 credits of a C or below. A grade of S must be received in ASTRON 990 Research and Thesis before the preliminary examination can be taken.

Assessments and Examinations

Students take a preliminary examination after completing their second academic year. Possible scores are "high pass," "low pass," and "fail." Students attaining a high pass are eligible to continue toward their Ph.D. Students obtaining a low pass may retake the exam or portions of the exam pending approval by the faculty. If this approval is not granted or students do not wish to retake the exam, they may complete the requirements for a terminal masters. Students who fail the exam will be dismissed from the program.

Doctoral candidates must submit a written dissertation proposal and make an oral presentation to the faculty by the end of their third academic year.

A written dissertation must be submitted and successfully defended before a faculty committee.

Language Requirements

No language requirements.

Doctoral Minor / Breadth Requirements

All doctoral students are required to complete a minor. They may either meet the minor requirements set by an external department (typically physics), or they may choose a distributed minor. In the latter case 12 credits must be taken from two or more relevant departments outside of astronomy. The coursework will normally be at the 400 level and above although special exceptions may be made in the case where 300-level courses are needed to satisfy prerequisites. At least two courses must be completed in graduate-level coursework; courses with the Graduate Level Coursework attribute are identified and searchable in the university’s Course Guide. Courses for the distributed minor or for minors outside of physics should be approved by the student’s mentoring committee (or the graduate advisor if the mentoring committee has not yet been formed.)

REQUIRED COURSES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTRON 500</td>
<td>Techniques of Modern Observational Astrophysics</td>
<td>3</td>
</tr>
<tr>
<td>ASTRON 700</td>
<td>Basic Astrophysics I</td>
<td>2</td>
</tr>
<tr>
<td>ASTRON 702</td>
<td>Basic Astrophysics II</td>
<td>2</td>
</tr>
<tr>
<td>ASTRON 715</td>
<td>Stellar Interiors and Evolution</td>
<td>2</td>
</tr>
<tr>
<td>ASTRON 720</td>
<td>The Interstellar Medium I: Basic Processes</td>
<td>2</td>
</tr>
<tr>
<td>ASTRON 730</td>
<td>Galaxies</td>
<td>2</td>
</tr>
<tr>
<td>ASTRON 735</td>
<td>Observational Cosmology</td>
<td>2</td>
</tr>
<tr>
<td>ASTRON 990</td>
<td>Research and Thesis</td>
<td>1-12</td>
</tr>
</tbody>
</table>
POLICIES

GRADUATE SCHOOL POLICIES
The Graduate School’s Academic Policies and Procedures (https://grad.wisc.edu/acadpolicy) provide essential information regarding general university policies. Program authority to set degree policies beyond the minimum required by the Graduate School lies with the degree program faculty. Policies set by the academic degree program can be found below.

MAJOR-SPECIFIC POLICIES
GRADUATE PROGRAM HANDBOOK
The Graduate Program Handbook (http://www.astro.wisc.edu/grad-students/phd-program) is the repository for all of the program’s policies and requirements.

PRIOR COURSEWORK
Graduate Work from Other Institutions
With program approval, students are allowed to count no more than 34 credits of graduate coursework from other institutions. Coursework earned ten years or more prior to admission to a doctoral degree is not allowed to satisfy requirements.

UW–Madison Undergraduate
Up to 7 credits numbered 700 or above from a UW–Madison undergraduate degree are allowed to count toward the degree.

UW–Madison University Special
With program approval, students are allowed to count no more than 15 credits of coursework numbered 400 or above taken as a UW–Madison Special student. Coursework earned ten years or more prior to admission to a doctoral degree is not allowed to satisfy requirements.

PROBATION
A grade of C or lower in a core course will result in the student being placed on academic probation. This is removed after the next grade of B or better in a core course. Grades of C or lower in two or more core courses will result in dismissal.

A semester GPA below 3.0 will result in the student being placed on academic probation. This will be removed if the student attains a GPA of 3.0 or above in the subsequent semester.

ADVISOR / COMMITTEE
All students will be assigned a mentoring committee consisting of the student’s advisor and two other faculty members. Students are strongly encouraged (but not required) to meet with their mentoring committees twice a year in the first two years and annually thereafter.

CREDITS PER TERM ALLOWED
15 credits

TIME CONSTRAINTS
A candidate for a doctoral degree who fails to take the final oral examination and deposit the dissertation within five years after passing the preliminary examination may be required to take another preliminary examination and to be admitted to candidacy a second time.

OTHER
University fellowships or departmental assistantships are offered, contingent on satisfactory progress. The length of guaranteed student support is four continuous years for those with no prior graduate work. Three continuous years of funding are guaranteed for those with one year or more of prior graduate work. It is almost always the case that students remain fully funded through their thesis defense.

PROFESSIONAL DEVELOPMENT

GRADUATE SCHOOL RESOURCES
Take advantage of the Graduate School’s professional development resources (https://grad.wisc.edu/pd) to build skills, thrive academically, and launch your career.

LEARNING OUTCOMES
1. Demonstrate a broad understanding of core astrophysical topics including gravitational dynamics; radiative processes; the interstellar medium; the formation, structure, and evolution of stars and galaxies; cosmology; and observational and numerical techniques.

2. Demonstrate academic mastery in their area of concentration, including a deep understanding of current theories, recent findings, and their broader implications.

3. Evaluate scientific literature and use it to construct theoretical frameworks and testable predictions for their own research projects.

4. Foster ethical and professional conduct.

5. Develop and complete original research that substantively advances a specific field of study. In so doing, they will cultivate their critical thinking skills, creativity, and independence.

6. Utilize modern instrumental, observational, or theoretical research techniques in their analysis.

7. Formulate ideas, designs, or techniques that advance the boundaries of knowledge within their field.

8. Critically evaluate the robustness and limits of conclusions drawn from their research and the potential for future studies.

9. Write clear and concise research articles for publication in refereed journals.

10. Critically evaluate the robustness and limits of conclusions drawn from their research and the potential for future studies.

11. Write clear and concise research articles for publication in refereed journals.

12. Deliver articulate oral presentations on their research to diverse audiences ranging from academic departments to the general public.

13. Serve as teaching assistants for at least one semester. Communicate scientific ideas in a clear and understandable manner, employ
techniques that enhance student engagement, and develop and carry out assessments of student progress.

Faculty: Professors Zweibel (chair), Barger, Bershady, Heinz, Lazarian, Mathieu, Stanimirovic, Wilcots; Associate Professor Townsend, Tremonti; Assistant Professors D’Onghia.