The current explosion of biomedical data provides an awesome opportunity to improve understanding of the mechanisms of disease and ultimately to improve human health care. However, fully harnessing the power of high-dimensional, heterogeneous data requires a new blend of skills including programming, data management, data analysis, and machine learning.

Blending the best of statistics and computer sciences, biostatistics and biomedical informatics, this program provides students the training they need to make sense of large-scale biomedical data, and to be scientific leaders in the team science that invariably accompanies such data. Unique features of the program include cross-training in computer science and biostatistics, and research rotations mentored by a program faculty member jointly with a scientific collaborator.

ACTIONS

Potential students include both those with bachelor’s degrees in an area of data-science (e.g., computer science, statistics), as well as health professionals and clinicians (e.g., M.D.’s, Pharm.D.’s, R.N.’s). It is expected that admitted candidates will have demonstrated an aptitude for computer science and math, fundamental programming skills, knowledge of data structures and algorithms, and at least two semesters of college calculus. We will however consider candidates who have a wide range of undergraduate backgrounds; providing opportunities to develop necessary skills immediately upon entering the program.

Applying to the Program:

- A formal online application (https://grad.wisc.edu/apply) with required fee through the UW—Madison Graduate School
- Three letters of recommendation
- Transcripts from each higher-education institution attended
- A statement of purpose
- GRE or MCAT scores
- Applicants whose native language is not English, or whose undergraduate instruction was not in English, must provide an English proficiency test score (TOEFL, MELAB, or IELTS)
- Evidence of quantitative preparation, including at least two semesters of college calculus (similar to MATH 221—MATH 222) and either a course in linear algebra (similar to MATH 340) or courses in programming and data structures

Application Deadline: December 31

For additional information about admission to the program, see PhD Program in Biomedical Data Science (https://www.biostat.wisc.edu/PHD-Biomedical-Data-Science) on the department website.

GRADUATE SCHOOL ADMISSIONS

Graduate admissions is a two-step process between academic degree programs and the Graduate School. Applicants must meet requirements of both the program(s) and the Graduate School. Once you have researched the graduate program(s) you are interested in, apply online (https://grad.wisc.edu/admissions).

FUNDING

GRADUATE SCHOOL RESOURCES

Resources to help you afford graduate study might include assistantships, fellowships, traineeships, and financial aid. Further funding information (https://grad.wisc.edu/funding) is available from the Graduate School. Be sure to check with your program for individual policies and processes related to funding.

PROGRAM RESOURCES

The program is designed such that almost all students who are accepted to the program will receive guaranteed funding for five years. This funding may take a number of forms including, but not limited to training grants, teaching assistantships, and research assistantships. For more information about funding opportunities, see Graduate Assistantships (https://grad.wisc.edu/studentfunding/currentstudents).

REQUIREMENTS

MINIMUM GRADUATE SCHOOL REQUIREMENTS

Review the Graduate School minimum academic progress and degree requirements (http://guide.wisc.edu/graduate/ #policiesandrequirementstext), in addition to the program requirements listed below.

MAJOR REQUIREMENTS

MODE OF INSTRUCTION

<table>
<thead>
<tr>
<th>Face to Face</th>
<th>Evening/Weekend</th>
<th>Online</th>
<th>Hybrid</th>
<th>Accelerated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Mode of Instruction Definitions

Evening/Weekend: These programs are offered in an evening and/or weekend format to accommodate working schedules. Enjoy the advantages of on-campus courses and personal connections, while keeping your day job. For more information about the meeting schedule of a specific program, contact the program.

Online: These programs are offered primarily online. Many available online programs can be completed almost entirely online with all online programs offering at least 50 percent or more of the program work online. Some online programs have an on-campus component that is often designed to accommodate working schedules. Take advantage of the convenience of online learning while participating in a rich, interactive learning environment. For more information about the online nature of a specific program, contact the program.

Hybrid: These programs have innovative curricula that combine on-campus and online formats. Most hybrid programs are completed on-campus with a partial or completely online semester. For more information about the hybrid schedule of a specific program, contact the program.

Accelerated: These on-campus programs are offered in an accelerated format that allows you to complete your program in a condensed time-frame. Enjoy the advantages of on-campus courses with minimal disruption to your career. For more information about the accelerated nature of a specific program, contact the program.
CURRICULAR REQUIREMENTS

Minimum Credit Requirement  
51 credits

Minimum Residence Credit Requirement  
32 credits

Minimum Graduate Coursework Requirement  
Half of degree coursework (26 out of 51 total credits) must be completed in graduate level coursework; courses with the Graduate Level Coursework attribute are identified and searchable in the university’s Course Guide.

Overall Graduate GPA Requirement  
3.00 GPA required.

Other Grade Requirements  
Ph.D. candidates should maintain a 3.5 GPA in all core curriculum courses and may not have any more than two Incompletes on their record at any one time.

Assessments and Examinations  
Students must complete an Oral Preliminary Exam, ideally taken in the students’ third year.

Language Requirements  
No language requirements.

Doctoral Minor/ Breadth Requirements  
All doctoral students are required to complete a minor.

REQUIRED COURSES

CORE TOPICS

Three year-long course sequences (18 credits) will be selected from a set of core topics.

1. A Biostatistics Theory and Methods sequence (topics 1–3)
2. A Computer Science/Informatics sequence (topics 4–7)
3. A sequence from any of the listed topics from Biostatistics Theory and Methods, Computer Science/Informatics, and the Specializations (topics 1–12)

SEQUENCES IN BIOSTATISTICS THEORY AND METHODS

(TOPICS 1–3)

Topic 1: Biostatistics Theory and Methods—Mathematical Statistics AND Introduction to Statistical Inference

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 609 &amp; STAT 610</td>
<td>Mathematical Statistics I and Introduction to Statistical Inference</td>
<td>7</td>
</tr>
</tbody>
</table>

Topic 2: Biostatistical Methods—Statistical Methods Series OR Regression Theory and Application Series

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 601 &amp; STAT 602</td>
<td>Statistical Methods I and Statistical Methods II</td>
<td>8</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 849 &amp; STAT 850</td>
<td>Theory and Application of Regression and Analysis of Variance I and Theory and Application of Regression and Analysis of Variance II</td>
<td>6</td>
</tr>
</tbody>
</table>

SEQUENCES IN COMPUTER SCIENCE / INFORMATICS

(TOPICS 4–7)

Topic 4: Machine Learning / AI—Intro to Artificial Intelligence AND Machine Learning

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 540 &amp; COMP SCI 760</td>
<td>Introduction to Artificial Intelligence and Machine Learning</td>
<td>6</td>
</tr>
</tbody>
</table>

Topic 5: Database Systems—Database Management AND Database Management Topics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 564 &amp; COMP SCI 764</td>
<td>Database Management Systems: Design and Implementation and Topics in Database Management Systems</td>
<td>7</td>
</tr>
</tbody>
</table>

Topic 6: Optimization—Linear Program Methods AND Nonlinear Optimization

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI/I SY E/MATH/STAT 525 &amp; COMP SCI/I SY E/MATH/STAT 726</td>
<td>Linear Programming Methods and Nonlinear Optimization I</td>
<td>6</td>
</tr>
</tbody>
</table>

Topic 7: Algorithms—Introduction to Algorithms AND Advanced Algorithms and Data Structures

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 577 &amp; COMP SCI 787</td>
<td>Introduction to Algorithms and Advanced Algorithms</td>
<td>7</td>
</tr>
</tbody>
</table>

SEQUENCES IN ADDITIONAL SPECIALIZATIONS

(TOPICS 8–12)

Topic 8: Clinical Informatics—Health Systems Engineering AND Health Information Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I SY E 417 &amp; I SY E/B M I/L I S 617</td>
<td>Health Systems Engineering and Health Information Systems</td>
<td>6</td>
</tr>
</tbody>
</table>

Topic 9: Clinical Biostatistics—Clinical Trials Statistical Methods AND Epidemiological Statistical Methods

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B M I/STAT 641 &amp; B M I/STAT 642</td>
<td>Statistical Methods for Clinical Trials and Statistical Methods for Epidemiology</td>
<td>6</td>
</tr>
</tbody>
</table>
MAJOR-SPECIFIC POLICIES

GRADUATE PROGRAM HANDBOOK

The Graduate Program Handbook (https://www.biostat.wisc.edu/sites/default/files/Handbook2017.pdf) is the repository for all of the program’s policies and requirements.

PRIOR COURSEWORK

Graduate Work from Other Institutions

With program approval, students are allowed to count no more than 9 credits of graduate course work from other institutions toward the graduate degree credit and graduate course work (50%) requirements. Course work earned ten years or more prior to admission to a doctoral degree is not allowed to satisfy requirements.

UW–Madison Undergraduate

For well-prepared advanced students, a student’s program may decide to accept up to 7 credits numbered 300 or above of required or elective courses from the undergraduate work completed at UW–Madison toward fulfillment of minimum degree and minor credit requirements. However, this work would not be allowed to count toward the 50% graduate course work minimum unless taken at the 700 level or above. This work will not appear on the graduate career portion of UW–Madison transcript nor count toward the graduate career GPA. The Graduate School’s minimum graduate residence credit requirement can be satisfied only with courses taken as a graduate student at UW–Madison.

UW–Madison University Special

After admission to a graduate program, the student’s program may decide to accept up to fifteen University Special student credits as fulfillment of the minimum graduate residence, graduate degree, or minor credit requirements. However, this work would not be allowed to count toward the 50% graduate course work minimum unless taken at the 700 level or above. This work will not appear on the graduate career portion of UW–Madison transcript nor count toward the graduate career GPA.

PROBATION

The status of a student can be one of three options:

1. Good standing (progressing according to standards; any funding guarantee remains in place).
2. Probation (not progressing according to standards but permitted to enroll; loss of funding guarantee; specific plan with dates and deadlines in place in regard to removal of probationary status).
3. Unsatisfactory progress (not progressing according to standards; not permitted to enroll, dismissal, leave of absence or change of advisor or program).
**ADVISOR / COMMITTEE**

All students are required to conduct a yearly progress report meeting with their advisor, scheduled by December 17 and completed by April 30. Failure to do so will result in a hold being placed on the student's registration.

**CREDITS PER TERM ALLOWED**

15 credits

**TIME CONSTRAINTS**

If students have been absent for five or more years, they must file a new Graduate School application for admission and submit it with a new application fee.

A candidate for a doctoral degree who fails to take the final oral examination and deposit the dissertation within five years after passing the preliminary examination may by require to take another preliminary examination and to be admitted to candidacy a second time.

**OTHER**

Funding guarantees are not provided for students in this program. Students are encouraged to explore funding options available across campus.

**PROFESSIONAL DEVELOPMENT**

**GRADUATE SCHOOL RESOURCES**

Take advantage of the Graduate School's professional development resources (https://grad.wisc.edu/pd) to build skills, thrive academically, and launch your career.

**LEARNING OUTCOMES**

1. Articulate the biological context of a research question and the scientific relevance of analysis results.

2. Communicate with scientific and quantitative (computational and statistical) colleagues about data analysis goals, methods, and results.

3. Extract the statistical or computational problems from a scientific problem. Develop, characterize, and implement suitable analysis methods to answer questions from biomedical data. Evaluate the validity of analysis methods.

4. Analyze data; extract knowledge and guide decisions based on biomedical data. Organize data and software so that quantitative analyses are meaningful and reproducible.

5. Critically evaluate quantitative approaches in the scientific literature.

6. Evaluate and develop study designs and recognize limitations and potential biases in research data sets.

7. Identify the ethical and regulatory issues surrounding a research project.

8. As part of a biological, biomedical or population health investigative team, serve as the leader in the area of rigorous computational and statistical investigation.

**PEOPLE**

**Faculty:** Broman, Buchanan, Burnside, Chappell, Chen, Chung, Craven, Dewey, Doan, Dyer, Elwert, Gangnon, Gianola, Gitter, Keles, Kendziorski, Kim, Lu, Mao, Mendonça, Mumford, Newton, Ong, Page, Palta, Patel, Peissig, Rathouz (Chair), Rosa, Rosenberg, Roy, Singh, Sorkness, Tang, Wahba, Yandell, Velten, Yu, Zhang, Zhu