ENVIRONMENTAL CHEMISTRY AND TECHNOLOGY, M.S.

The program has been organized to offer advanced instruction and research training in environmental chemistry and environmental technology leading to the master of science. The program trains candidates for careers in teaching, research, resource management, environmental consulting, and private sector/industrial positions. Areas of work include the development of advanced technologies and materials for air and water purification and for the saving and storage of energies, alternative energy technologies, water and air pollution control, soil and sediment remediation, environmental technology, chemical limnology, and groundwater chemistry.

The M.S. degree is designed for students who have a strong background in chemistry and who desire graduate training in applying chemistry to environmental systems. Individual programs are tailored to meet the candidate's interests through selection of a specialization and elective courses. Areas of specialization include aquatic chemistry, air pollution chemistry, terrestrial chemistry, and chemical- and bio-technology development.

The Environmental Chemistry and Technology Program faculty is composed of an interdepartmental committee. Several committee members who have appointments in the Department of Civil and Environmental Engineering are located in the Water Science and Engineering Laboratory. Other members are located in their respective departments.

The environmental chemistry and technology area occupies over 10,000 square feet of office and laboratory space in the Water Science and Engineering Laboratory. Facilities include offices, conference room, classrooms, computer facilities, and over 8,000 square feet devoted to research. The research areas, including trace element and mercury clean laboratories, are designed for research in aquatic chemistry, air pollution chemistry, and environmental technology. Shop facilities (electronics/mechanical) allow fabrication of specialized equipment tailored to the particular field and laboratory research needs. Other specialized facilities include areas for investigations of air pollution chemistry, ceramic membrane technologies, hazardous material remediation, and development of energy storage devices.

In addition to the Water Science and Engineering Laboratory, students also have access to numerous facilities on the UW–Madison campus, including laboratories in the Departments of Soil Science, Chemical and Biological Engineering, Materials Science and Engineering, Chemistry, Geoscience, Civil and Environmental Engineering, the Center for Limnology, and the State Laboratory of Hygiene.

ADMISSIONS

Students seeking admission should have a background in the fundamental areas of general, organic, physical, and analytical chemistry. In addition, students should have some background in applied sciences which can be fulfilled with a minimum of 6 credits in natural sciences such as botany, zoology, bacteriology, earth science, material science, biochemistry, or engineering. Students who have not met these requirements must do so prior to the completion of the master's degree.

The application deadline is January 1 for the fall term. Late applications may not be reviewed for funding opportunities.

Required materials

1. All applicants must use the UW–Madison Graduate School online application system.
2. Three letters of recommendation
4. Please send GRE and TOEFL scores electronically to UW–Madison, institution code 1846.
5. All items should be submitted through the online application. Please do not mail or e-mail materials directly to our program at the time of application. If you are admitted to our program, we will request an official copy of your transcript at that time.

GRADUATE SCHOOL ADMISSIONS

Graduate admissions is a two-step process between academic degree programs and the Graduate School. Applicants must meet requirements of both the program(s) and the Graduate School. Once you have researched the graduate program(s) you are interested in, apply online (https://grad.wisc.edu/admissions).

FUNDING

GRADUATE SCHOOL RESOURCES

Resources to help you afford graduate study might include assistantships, fellowships, traineeships, and financial aid. Further funding information (https://grad.wisc.edu/funding) is available from the Graduate School. Be sure to check with your program for individual policies and processes related to funding.

PROGRAM RESOURCES

Students accepted into the program can expect to be fully funded through fellowships, teaching assistantships, or research assistantships on research projects. Admission decisions are based on the student's qualifications and research interests, the availability of funding, and the focus of funded research projects. Funding includes a waiver of tuition (excluding segregated fees), health benefits (including family coverage), and a yearly stipend.

REQUIREMENTS

MINIMUM GRADUATE SCHOOL REQUIREMENTS

Review the Graduate School minimum academic progress and degree requirements (http://guide.wisc.edu/graduate/#policiesandrequirementstext), in addition to the program requirements listed below.
MAJOR REQUIREMENTS

MODE OF INSTRUCTION

<table>
<thead>
<tr>
<th>Mode of Instruction Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face to Face</td>
</tr>
<tr>
<td>Evening/Weekend</td>
</tr>
<tr>
<td>Online</td>
</tr>
<tr>
<td>Hybrid</td>
</tr>
<tr>
<td>Accelerated</td>
</tr>
</tbody>
</table>

Mode of Instruction Definitions

- **Face to Face**: These programs are offered in person to accommodate working schedules. Enjoy the advantages of on-campus courses and personal connections, while adhering to your personal schedule. For more information about the meeting schedule of a specific program, contact the program.

- **Evening/Weekend**: These programs are offered primarily on-campus. Many available on-campus programs can be completed almost entirely online with all online programs offering at least 50 percent of the program work online. Some online programs have an on-campus component that is often designed to accommodate working schedules. Take advantage of the convenience of online learning while participating in a rich, interactive learning environment. For more information about the online nature of a specific program, contact the program.

- **Online**: These programs are offered primarily online. Many available online programs can be completed almost entirely online with all online programs offering at least 50 percent or more of the program work online. Some online programs have an on-campus component that is often designed to accommodate working schedules. Take advantage of the convenience of online learning while participating in a rich, interactive learning environment. For more information about the online nature of a specific program, contact the program.

- **Hybrid**: These programs have innovative curricula that combine on-campus and online formats. Most hybrid programs are completed on-campus with a partial or completely online semester. For more information about the hybrid schedule of a specific program, contact the program.

- **Accelerated**: These on-campus programs are offered in an accelerated format that allows you to complete your program in a condensed time-frame. Enjoy the advantages of on-campus courses with minimal disruption to your career. For more information about the accelerated nature of a specific program, contact the program.

CURRICULAR REQUIREMENTS

<table>
<thead>
<tr>
<th>Minimum Credit Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Residence Credit Requirement</td>
</tr>
<tr>
<td>16 credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum Graduate Coursework Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Graduate GPA Requirement</td>
</tr>
<tr>
<td>3.00 GPA required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Grade Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students must earn a B or above in all courses counting toward degree requirements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessments and Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The thesis track requires a formal thesis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>No language requirements.</td>
</tr>
</tbody>
</table>

REQUIRED COURSES

Students should also have previous coursework in the natural sciences, which can include botany, bacteriology, zoology, earth science, material science, biochemistry or engineering. Note that CIV ENGR 500 Water Chemistry or equivalent material is a prerequisite for many of the core EC&T courses. If these requirements have not been met prior to entering the program, this should be considered when planning the coursework.

GRADUATE SCHOOL POLICIES

The Graduate School’s Academic Policies and Procedures (https://grad.wisc.edu/acadpolicy) provide essential information regarding general university policies. Program authority to set degree policies beyond the minimum required by the Graduate School lies with the degree program faculty. Policies set by the academic degree program can be found below.

MAJOR-SPECIFIC POLICIES

GRADUATE PROGRAM HANDBOOK

A Graduate Program Handbook containing all of the program’s policies and requirements is forthcoming from the program.

PRIOR COURSEWORK

Graduate Work from Other Institutions

With program approval, students may be allowed to count credits of graduate coursework from other institutions. Coursework earned five or more years prior to admission to a master’s degree is not allowed to satisfy requirements.
UW–Madison Undergraduate

With program approval, 7 credits from a UW–Madison undergraduate degree are allowed to count toward the degree.

UW–Madison University Special

With program approval, 15 credits taken as a UW–Madison Special student are allowed toward minimum coursework requirements.

PROBATION

The Graduate School regularly reviews the record of any student who earned grades of BC, C, D, F, or Incomplete in a graduate course (300 or above), or grade of U in research credits. This review could result in academic probation with a hold on future enrollment or in being suspended from the Graduate School.

1. Good standing (progressing according to standards; any funding guarantee remains in place).
2. Probation (not progressing according to standards but permitted to enroll; loss of funding guarantee; specific plan with dates and deadlines in place in regard to removal of probationary status).
3. Unsatisfactory progress (not progressing according to standards; not permitted to enroll, dismissal, leave of absence or change of advisor or program).

ADVISOR / COMMITTEE

All incoming students are assigned an advisor. Students are expected to meet with their advisor on a regular basis.

CREDITS PER TERM ALLOWED

15 credits

TIME CONSTRAINTS

Master’s degree students who have been absent for five or more consecutive years lose all credits that they have earned before their absence. Individual programs may count the coursework students completed prior to their absence for meeting program requirements; that coursework may not count toward Graduate School credit requirements.

OTHER

Admitted students will be contacted directly by faculty regarding funding opportunities.

PROFESSIONAL DEVELOPMENT

GRADUATE SCHOOL RESOURCES

Take advantage of the Graduate School’s professional development resources (https://grad.wisc.edu/pd) to build skills, thrive academically, and launch your career.

LEARNING OUTCOMES

1. Articulate research problems, potentials, and limits with respect to theory, knowledge, or practice within the field of environmental chemistry and technology.

2. Formulate ideas, concepts, and/or techniques beyond the current boundaries of knowledge in environmental chemistry and technology.

3. Create research or scholarship that makes a substantive contribution.

4. Demonstrate breadth within their learning experiences.

5. Advance contributions to the field of environmental chemistry.

6. Communicate complex ideas in a clear and understandable manner.

7. Recognize and apply principles of ethical and professional conduct.

PEOPLE

Civil and Environmental Engineering Faculty: Professors Noyce (chair), Adams, Bahia, Cramer, Feigl, Hanna, Harrington, Holloway, Hurley, Karthikeyan, Lee, Likos, Long, McMahon, Noguera, Park, Parra-Montesinos (director), Pedersen, Potter, Ran, Russell, Schauer, Wu; Associate Professors Ahn, Fratta, Hurley, Loheide, Pincheira, Tinjum; Assistant Professors Block, Gadikota, Ginder-Vogel, Hedegaard, Hicks, Prabhakar, Remucal, Sone, Wang, Wright. See also CEE faculty (http://directory.engr.wisc.edu/cee/faculty).

Geological Engineering Faculty: Professors Likos (director) (Civil and Environmental Engineering), Anderson (Geoscience), Bahr (Geoscience), Feigl (Geoscience), Goodwin (Geoscience), Holloway (Nelson Institute), Thurber (Geoscience), Tikoff (Geoscience), Tobin (Geoscience), Wang (Geoscience), Wu (Civil and Environmental Engineering); Associate Professors Fratta (Civil and Environmental Engineering), Loheide (Civil and Environmental Engineering), Tinjum (Engineering Professional Development); Assistant Professors Cardiff (Geoscience), Ginder-Vogel (Civil and Environmental Engineering), Hicks (Civil and Environmental Engineering), Sone (Civil and Environmental Engineering), Zoet (Geoscience); Affiliate Professors Kung (Soil Science), Lowery (Soil Science), Plesha (Engineering Physics), Potter (Civil and Environmental Engineering). See also GLE faculty (https://www.engr.wisc.edu/geological-engineering/people).

Environmental Chemistry and Technology: Professors Hurley (director) (Civil and Environmental Engineering), Bertram (Chemistry), Bleam (Soil Science), Ginder-Vogel (Civil and Environmental Engineering), Gadikota (Civil and Environmental Engineering), Harrington (Civil and Environmental Engineering), Karthikeyan (Biological Systems Engineering), McMahon (Civil and Environmental Engineering/Bacteriology), Pedersen (Soil Science), Remucal (Civil and Environmental Engineering), Roden (Geoscience), Root (Chemical and Biological Engineering), Schauer (Civil and Environmental Engineering), Thompson (Biological Systems Engineering). See also ECT Faculty (https://www.engr.wisc.edu/academics/graduate-academics/environmental-chemistry-technology).