Biomedical engineering (BME) is the application of engineering tools for solving problems in biology and medicine. It is an engineering discipline that is practiced by professionals trained primarily as engineers, but with a specialized focus on the medical and biological applications of classical engineering principles. BMEs apply their multidisciplinary expertise to problems such as designing new medical instruments and devices, understanding and repairing the human body, and applying resourceful and cross-disciplinary approaches to age-old problems in the fields of medicine, biology, and beyond. A biomedical engineer can expect to work in a wide variety of multidisciplinary teams with professionals such as physicians, biologists, researchers, nurses, therapists, mathematicians, administrators, and many others while working in industry, as entrepreneurs, and in the medical profession and academia.

To prepare students for such careers, the 128-credit, four-year BME undergraduate degree emphasizes engineering design, access to cooperatives/internships at local or national medical device manufacturers, hospitals, or laboratories; continuous advising; flexibility in engineering specialization areas; participation in program evaluation and improvement; study-abroad opportunities; and an option to complete a one-year M.S degree following the undergraduate program.

The cornerstone of the BME program is its **unique, seven-semester design curriculum**. Students take an advising/design project course the freshman year and every semester during the sophomore through senior years. A faculty member advises small teams of students, serving as advisor/consultant/mentor, to guide them through real-world design projects solicited from clients throughout the university, medical profession, industry, and the community. These clients serve as resources for students in their project, conduct discussions, and expose the students to various aspects of the BME field. Over the course of each semester, teams design, fabricate, and ultimately present a product that meets the needs of the client. This novel approach gives students an exceptionally balanced education by incorporating clinical and biomedical industry experience, thus expanding their network. Overall, the design experiences highlight the very multidisciplinary nature of BME.

Within the program, BME students choose a course of study that emphasizes one of the following four specializations within the field:

1. **Bioinstrumentation** is the application of electronics, computer programming, and measurement principles to develop devices used in diagnosis and treatment of disease. Examples of devices and techniques that have emerged from this discipline include the electrocardiogram, the cardiac pacemaker, blood pressure measurement, brain–computer interface, implantable electrodes, sensors, tumor ablation and other medical devices. Also within the field of bioinstrumentation, micro-electromechanical systems (BioMEMS) can be used to engineer instruments and methods for research at the cellular scale, and neuroengineering applies these principles to study the function of neural systems and the development of implantable technology.

2. **Bioimaging** involves the design and enhancement of systems for noninvasive anatomical, cellular, and molecular imaging. In addition to common imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET), bioimaging includes topics such as biophotonics, optics, and multimode imaging, and is now expanding to serve functional and therapeutic purposes as well. Advanced capabilities result when fundamentals of engineering, physics, and computer science are applied in conjunction with the expertise of clinical collaborators.

3. **Biomechanics** applies engineering mechanics for understanding biological processes and for solving medical problems at systemic, organ, tissue, cellular, and molecular levels. This includes the mechanics of connective tissues (ligament tendon, cartilage and bone) as well as orthopedic devices (fracture fixation hardware and joint prostheses), vascular remodeling (pulmonary hypertension), muscle mechanics with injury and healing, human motor control, neuromuscular adaptation (with age, injury, and disease), microfluidics for cellular applications, cellular motility and adhesion, and rehabilitation engineering (quantifying, adapting and restoring function for those who lost abilities).

4. **Biomaterials/cellular/tissue engineering** involves the characterization and use of structural materials, derived from synthetic or natural sources, to design medical products that safely interact with tissues for therapeutic or diagnostic purposes such as artificial blood vessels, heart valves, orthopedic joints, and drug delivery vehicles. Tissue engineers understand structure–function relationships in normal and pathological tissues to engineer living tissues and/or biological substitutes to restore, maintain, or improve function. At the cellular and molecular level this includes the study or manipulation of biological processes such as the cell's differentiation, proliferation, growth, migration, and apoptosis.

Although the various disciplines within BME can be separately defined, solving a biomedical program requires an overall understanding of the field. For example, the design of an artificial hip requires an understanding of the forces and biomechanics of human movement as well as the mechanical and material properties of the prosthetic device. The material choice and topography play a critical role in cellular and tissue integration, which ultimately leads to long-term stability of the implant. In addition, bioimaging techniques are required to characterize the morphology of the diseased hip and the success of the procedure. Finally, instrumentation devices are utilized during the hip replacement surgery.

Students choose the biomedical engineering field to be of service to people; for the excitement of working with living systems; and to apply advanced technology to the complex problems of medical care. Students in the BME program can expect to develop skills in innovative thinking, critical analysis of ethics, project management, and technical writing, all in an environment that cultivates creativity, teamwork, and curiosity. With many possible focuses within the major, BME students have the opportunity to explore and cultivate their interests in specific topics while applying the concepts of engineering to medical applications, hands-on projects, and cutting-edge research.

Students successfully completing the B.S. degree in BME with an overall GPA of 3.0 or a GPA of 3.25 for the last 60 credits of the B.S. program are eligible to apply for the one-year M.S. degree.
HOW TO GET IN

ADMISSION TO THE COLLEGE AS A FRESHMAN

Students applying to UW–Madison (https://www.admissions.wisc.edu/apply) need to indicate an engineering major (https://www.engr.wisc.edu/academics/undergraduate-academics/choosing-a-major) as their first choice in order to be considered for direct admission to the College of Engineering. Direct admission to a major means students will start in the program of their choice in the College of Engineering and will need to meet progression requirements (https://www.engr.wisc.edu/academics/student-services/academic-advising/first-year-undergraduate-students/progression-requirements) at the end of the first year to guarantee advancement in that program.

CROSS-CAMPUS TRANSFER TO ENGINEERING

UW–Madison students in other schools and colleges on campus must meet the course and credit requirements for admission to engineering degree granting classifications specified in the general college requirements (https://www.engr.wisc.edu/academics/student-services/academic-advising/cross-campus-students). The requirements are the minimum for admission consideration. Cross-campus admission is competitive and selective, and the grade point average expectations may increase as demand trends change. The student's overall academic record at UW–Madison is also considered. Students apply to their intended engineering program by submitting the online application by stated deadlines for spring and fall. The College of Engineering offers group information sessions (https://www.engr.wisc.edu/academics/student-services/academic-advising/cross-campus-students) for students to learn about the cross-campus transfer process.

OFF-CAMPUS TRANSFER TO ENGINEERING

With careful planning, students at other accredited institutions can transfer coursework that will apply toward engineering degree requirements at UW–Madison. Off-campus transfer applicants are considered for direct admission to the College of Engineering by applying to the Office of Admissions with an engineering major listed as their first choice. Those who are admitted to their intended engineering program must meet progression requirements (https://www.engr.wisc.edu/academics/student-services/academic-advising/transfer-students) at the point of transfer or within their first two semesters at UW–Madison to guarantee advancement in that program. A minimum of 30 credits in residence in the College of Engineering is required after transferring, and all students must meet all requirements for their major in the college. Transfer admission to the College of Engineering is competitive and selective, and students who have earned more than 80 transferable semester credits at the time of application are not eligible to apply.

Off-campus transfer students are encouraged to discuss their interests, academic background, and admission options with the Transfer Admissions and Advising Coordinator in the College of Engineering: ugrotransfer@ engr.wisc.edu or 608-262-2473.

SECOND BACHELOR’S DEGREE

The College of Engineering does not accept second undergraduate degree applications. Second degree students (https://www.engr.wisc.edu/admissions/undergraduate-admissions/returning-adults-second-degree-students) might explore the Biological Systems Engineering program at UW–Madison, an undergraduate engineering degree elsewhere, or a graduate program in the College of Engineering.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatetystudent) section of the Guide.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Detail</th>
</tr>
</thead>
</table>
| General Education | • Breadth—Humanities/Literature/Arts: 6 credits
• Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
• Breadth—Social Studies: 3 credits
• Communication Part A & Part B *
• Ethnic Studies *
• Quantitative Reasoning Part A & Part B * |

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

MAJOR REQUIREMENTS

MATHEMATICS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Calculus and Analytic Geometry 1 and Calculus and Analytic Geometry 2</td>
<td>13</td>
</tr>
<tr>
<td>& MATH 222</td>
<td>and Calculus—Functions of Several Variables</td>
<td></td>
</tr>
<tr>
<td>& MATH 234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 320</td>
<td>Linear Algebra and Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 319</td>
<td>Techniques in Ordinary Differential Equations</td>
<td></td>
</tr>
<tr>
<td>STAT 324</td>
<td>Introductory Applied Statistics for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>or STAT/ MATH 431</td>
<td>Introduction to the Theory of Probability</td>
<td></td>
</tr>
</tbody>
</table>

SCIENCE

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 301</td>
<td>Introduction to Data Programming</td>
<td>3</td>
</tr>
<tr>
<td>or COMP SCI 200</td>
<td>Programming I</td>
<td></td>
</tr>
<tr>
<td>or COMP SCI 300</td>
<td>Programming II</td>
<td></td>
</tr>
<tr>
<td>or COMP SCI 310</td>
<td>Problem Solving Using Computers</td>
<td></td>
</tr>
<tr>
<td>E M A 201</td>
<td>Statics (only statics counts for Engineering credits below)</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>PHYSICS 201</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 207</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 202</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 208</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry (or CHEM 103 & CHEM 104)</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 343</td>
<td>Introductory Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 341</td>
<td>Elementary Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 345</td>
<td>Intermediate Organic Chemistry and Introductory Organic Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>& CHEM 344</td>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>or CHEM 327</td>
<td>Fundamentals of Analytical Science</td>
<td>5</td>
</tr>
<tr>
<td>ZOOLOGY/</td>
<td>Animal Biology</td>
<td>9</td>
</tr>
<tr>
<td>BIOLOGY 101</td>
<td>and Animal Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>& ZOOLOGY/</td>
<td>Introductory Biology (or)</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY 102</td>
<td>Evolution, Ecology, and Genetics and Cellular Biology</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 381</td>
<td>Physiology (or)</td>
<td>5</td>
</tr>
<tr>
<td>& BIOCORE 383</td>
<td>Fundamentals of Human Physiology (or)</td>
<td></td>
</tr>
<tr>
<td>PHYSIOL 335</td>
<td>Organismal Biology</td>
<td>5</td>
</tr>
<tr>
<td>& PHYSIOL 435</td>
<td>and Organismal Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 485</td>
<td>Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>& BIOCORE 486</td>
<td>Comparative Anatomy of Vertebrates</td>
<td></td>
</tr>
<tr>
<td>or ZOOLOGY 430</td>
<td>Introduction to Animal Development</td>
<td></td>
</tr>
<tr>
<td>or ZOOLOGY/</td>
<td>Neurobiology</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 523</td>
<td>PSYCH 523</td>
<td></td>
</tr>
<tr>
<td>or ZOOLOGY 570</td>
<td>Cell Biology</td>
<td></td>
</tr>
<tr>
<td>or ZOOLOGY 611</td>
<td>Comparative and Evolutionary Physiology</td>
<td></td>
</tr>
<tr>
<td>or GENETICS 466</td>
<td>Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td>or BIOCORE 587</td>
<td>Biological Interactions</td>
<td></td>
</tr>
</tbody>
</table>

ENGINEERING COURSES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEREGR 110</td>
<td>Introduction to Engineering and Design Practicum 1</td>
<td>2</td>
</tr>
<tr>
<td>INTEREGR 170</td>
<td>and Design Practicum 1</td>
<td></td>
</tr>
<tr>
<td>E M A 201</td>
<td>Statics</td>
<td>6</td>
</tr>
<tr>
<td>E M A 303</td>
<td>Mechanics of Materials</td>
<td></td>
</tr>
<tr>
<td>or M E 306</td>
<td>Mechanics of Materials</td>
<td></td>
</tr>
<tr>
<td>B M E 200</td>
<td>Biomedical Engineering Design</td>
<td>18</td>
</tr>
<tr>
<td>B M E 201</td>
<td>Biomedical Engineering Fundamentals and Design</td>
<td></td>
</tr>
<tr>
<td>B M E 300</td>
<td>Biomedical Engineering Design</td>
<td></td>
</tr>
<tr>
<td>B M E 301</td>
<td>Biomedical Engineering Design</td>
<td></td>
</tr>
<tr>
<td>B M E 310</td>
<td>Bioinstrumentation</td>
<td></td>
</tr>
<tr>
<td>B M E 315</td>
<td>Biomechanics</td>
<td></td>
</tr>
<tr>
<td>B M E 400</td>
<td>Capstone Design Course in Engineering</td>
<td></td>
</tr>
<tr>
<td>B M E 402</td>
<td>Biomedical Engineering Design</td>
<td></td>
</tr>
<tr>
<td>B M E/</td>
<td>Biological Interactions with PHM SCI 430</td>
<td></td>
</tr>
<tr>
<td>EPD 397</td>
<td>Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>or ZOOLOGY/</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/</td>
<td>PSYCH 523</td>
<td></td>
</tr>
<tr>
<td>BOTANY 152</td>
<td>PSYCH 523</td>
<td></td>
</tr>
<tr>
<td>or BIOCORE 384</td>
<td>Cellular Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>ANATOMY/</td>
<td>Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>KINES 328</td>
<td>Comparative Anatomy of Vertebrates</td>
<td></td>
</tr>
<tr>
<td>or ZOOLOGY 430</td>
<td>Introduction to Animal Development</td>
<td></td>
</tr>
<tr>
<td>or ZOOLOGY/</td>
<td>Neurobiology</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 523</td>
<td>PSYCH 523</td>
<td></td>
</tr>
<tr>
<td>or ZOOLOGY 570</td>
<td>Cell Biology</td>
<td></td>
</tr>
<tr>
<td>or ZOOLOGY 611</td>
<td>Comparative and Evolutionary Physiology</td>
<td></td>
</tr>
<tr>
<td>or GENETICS 466</td>
<td>Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td>or BIOCORE 587</td>
<td>Biological Interactions</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL EDUCATION

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications A</td>
<td>Science and Storytelling</td>
<td>3</td>
</tr>
<tr>
<td>or COM ARTS 11</td>
<td>Introduction to Speech Composition</td>
<td></td>
</tr>
<tr>
<td>or ENGL 100</td>
<td>Introduction to College Composition</td>
<td></td>
</tr>
<tr>
<td>or ESL 118</td>
<td>Academic Writing II</td>
<td></td>
</tr>
<tr>
<td>Communications B</td>
<td>Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>or ZOOLOGY/</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/</td>
<td>PSYCH 523</td>
<td></td>
</tr>
<tr>
<td>BOTANY 152</td>
<td>PSYCH 523</td>
<td></td>
</tr>
<tr>
<td>or BIOCORE 384</td>
<td>Cellular Biology Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

At least 15 credits of liberal studies following the College of Engineering guidelines

BIOMEDICAL ENGINEERING AREA TECHNICAL ELECTIVE REQUIREMENTS

Choose 15 credits of area technical electives in one of the following tracks and at least one advanced BME elective:

Bioinstrumentation:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E C E 230</td>
<td>Circuit Analysis</td>
<td>4</td>
</tr>
</tbody>
</table>

Area Electives in Bioinstrumentation

Choose from any ECE course and from the advanced BME area electives in Bioinstrumentation

Advance BME Area Technical Electives in Bioinstrumentation

1. Both INTEREGR 110 Introduction to Engineering and INTEREGR 170 Design Practicum are required.
 INTEREGR 170 counts toward the required 48 engineering credits.
 INTEREGR 110 counts as a general degree credit, not as an engineering credit.

2. EPD courses are not included in this category
 InterEGR courses are not included in this category except INTEREGR 301 Engineering and Biology, Technological Symbiosis.
 Only 3 credits of an engineering independent study may count (e.g., B M E 399 Independent Study, B M E 489 Honors in Research, CBE 699 Advanced Independent Studies, etc.).
 Special topics courses must have prior approval of the BME Curriculum Committee.

3. Both INTEREGR 110 Introduction to Engineering and INTEREGR 170 Design Practicum are required.
 INTEREGR 170 counts toward the required 48 engineering credits.
 INTEREGR 110 counts as a general degree credit, not as an engineering credit.
Biomedical Engineering, B.S.

Required Area Elective

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B M E/E C E 462</td>
<td>Medical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>B M E/E C E 463</td>
<td>Computers in Medicine</td>
<td>3</td>
</tr>
<tr>
<td>B M E/</td>
<td>Introduction to Energy-Tissue Interactions</td>
<td>3</td>
</tr>
<tr>
<td>MED PHYS 535</td>
<td>Introduction to Biological and Medical Microsystems</td>
<td>3</td>
</tr>
<tr>
<td>B M E 550</td>
<td>Systems Biology: Mammalian Signaling Networks</td>
<td>3</td>
</tr>
</tbody>
</table>

Area Electives in Biomedicine

Choose from the following and from the advanced BME area electives in Biomechanics

Biomaterials/Cell/Tissue Engineering:

Choose from any CBE or MS&E course, the courses below, and from the advanced BME area electives in Biomaterials/Cell/Tissue Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B M E/E 550</td>
<td>Introduction to Biological and Medical Microsystems</td>
<td>3</td>
</tr>
<tr>
<td>B M E 556</td>
<td>Systems Biology: Mammalian Signaling Networks</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B M E/CBE 330</td>
<td>Engineering Principles of Molecules, Cells, and Tissues</td>
<td>3-4</td>
</tr>
<tr>
<td>or B M E/CBE 320</td>
<td>Introductory Transport Phenomena</td>
<td></td>
</tr>
</tbody>
</table>

Area Electives in Biomaterials/Cell/Tissue Engineering

Choose from any CBE or MS&E course, the courses below, and from the advanced BME area electives in Biomaterials/Cell/Tissue Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B M E/CBE 510</td>
<td>Introduction to Tissue Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Advanced BME Area Technical Electives in Biomaterials/Cell/Tissue Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B M E/CBE 520</td>
<td>Stem Cell Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>B M E 545</td>
<td>Engineering Extracellular Matrices</td>
<td>3</td>
</tr>
<tr>
<td>B M E 550</td>
<td>Introduction to Biological and Medical Microsystems</td>
<td>3</td>
</tr>
<tr>
<td>B M E 556</td>
<td>Systems Biology: Mammalian Signaling Networks</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B M E/CHEM/ MED PHYS 650</td>
<td>Biological Optical Microscopy</td>
<td>3</td>
</tr>
</tbody>
</table>

Biomechanics:

Choose from any ME or EMA course and from the advanced BME area electives in Biomechanics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E M A 202</td>
<td>Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

Area Electives in Biomechanics

Choose from any ME or EMA course and from the advanced BME area electives in Biomechanics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M E 240</td>
<td>Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>
Quality of Work
Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES
At the time of graduation, UW-Madison Biomedical Engineering students will have attained:

(a) an ability to apply knowledge of mathematics (including differential equations and statistics), science, and engineering to solve problems at the interface of engineering and biology.

(b) an ability to design and conduct experiments (including making measurements) on, as well as to analyze and interpret data from living systems; addressing the problems associated with the interaction between living and non-living materials and systems.

(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

(d) an ability to function on multidisciplinary and diverse teams and provide leadership.

(e) an ability to identify, formulate, and solve biomedical engineering problems.

(f) an understanding of professional and ethical responsibility.

(g) an ability to communicate effectively: by oral, written and graphic modes.

(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

(i) a recognition of the need for, and an ability to engage in life-long learning.

(j) a knowledge of contemporary issues.

(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

(l) and an understanding of biology, human physiology, and chemistry as related to biomedical engineering needs.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

First Year

Fall	Credits	Spring	Credits
INTEREGR 110 1 | 1 | INTEREGR 170 1 | 2
MATH 221 | 5 | MATH 222 | 4
CHEM 109 (or CHEM 103 & Chem 104) 1 Med | 5 | E M A 201, PHYSICS 201, or PHYSICS 207 1 Med | 3
Communications A | 3 | CHEM 343 or 341 4 Med | 3

Second Year

Fall	Credits	Spring	Credits
B M E 200 5 | 1 | B M E 201 | 2
MATH 234 | 4 | CHEM 345 or 327 4 Med | 3
PHYSICS 202 or 208 4 Med | 5 | B M E 310 7 | 3
Select one of the following options: | 5 | MATH 320 or 319 | 3
ZOOLOGY/BIOLOGY 101 & ZOOLOGY/BIOLOGY 102 | 5 | Select one of the following options (recommended for premeds) or select from EPD 397 third year:
ZOOLOGY/BIOLOGY/BOTANY 151 (or) Med | | ZOOLOGY/BIOLOGY/BOTANY 152 Med | 3
BIOCORE 381 & BIOCORE 382 (the first lab-382-is recommended not required) 5 Med | | BIOCORE 383 & BIOCORE 384 Med | 15

Third Year

Fall	Credits	Spring	Credits
B M E 300 5 | 1 | B M E 301 5 | 1
E M A 303 or M E 306 | 3 | E P D 397 (if Zoology 152 or Biocore 384 is not taken) 5 | 3
CHEM 344 (or Chem 327 in second year) Med | 2 | Advanced Zoology Elective, Select one of the following:
PHYSIOL 335 (or) Med | 5 | ANATOMY/KINES 328 | 3
PHYSIOL 435 (or) Med | 5 | GENETICS 466 | 3
BIOCORE 485 & BIOCORE 486 Med | 5 | ZOOLOGY 430 | 3
B M E 315 7 | 3 | ZOOLOGY 470 | 3
Area-Required Engineering Technical Elective | 3 | ZOOLOGY/PSYCH 523 | 3
E C E 230 | 3 | ZOOLOGY 570 | 3
E C E 330 | 3 | ZOOLOGY 611 | 3
E M A 202 or M E 240 | 3 | BIOCORE 587 | 3
B M E/CBE 330 or 320 | 4 | Liberal Studies Elective Med | 4
B M E/PHM SCI 430 7 | 3 | Area-Engineering Technical Elective | 3

Fourth Year

Fall	Credits	Spring	Credits
B M E 400 | 3 | B M E 402 5 | 1
STAT 324 or 431 Med | 3 | Liberal Studies Elective Med | 3
COMP SCI 301 | 3 | Liberal Studies Elective | 3
Footnotes

1. INTEREG 110 Introduction to Engineering and INTEREGR 170 Design Practicum are both required. Only INTEREGR 170 counts toward the required 48 engineering credits. INTERERG 110 is required only for students directly admitted to engineering programs as freshman.

2. CHEM 103 General Chemistry I & CHEM 104 General Chemistry II may be substituted for CHEM 109 Advanced General Chemistry. For this choice, the excess 4 credits are counted as free electives. Most medical schools require one year of basic chemistry. UW–Madison's medical school (and others) accepts CHEM 109 as a full-year equivalent.

3. If PHYSICS 201 General Physics is chosen instead of E M A 201 Statics, another engineering course from a degree-granting engineering program must be substituted for E M A 201 Statics. The excess 5 credits from PHYSICS 201 General Physics are counted as free elective credits. PHYSICS 207 General Physics—PHYSICS 208 General Physics may be used to substitute for PHYSICS 201—PHYSICS 202.

4. CHEM 341 Elementary Organic Chemistry may be substituted by those students who are not interested in satisfying premed requirements and who expect to take only one semester of organic chemistry (CHEM 341 is not permitted as a prerequisite for CHEM 344 Introductory Organic Chemistry Laboratory/CHM 345 Intermediate Organic Chemistry). Either CHEM 344/CHM 345 or CHEM 327 Fundamentals of Analytical Science (or CHEM 329 Fundamentals of Analytical Science) is required.

5. Students who are admitted late to the program and/or students who take part in another experience (such as co-op and/or study abroad) missing B M E 200 Biomedical Engineering Design, B M E 300, B M E 301, or B M E 402 may substitute for up to two of these course for the semester they are not in the program or at UW-Madison. Approved substitutions include: B M E 1 Cooperative Education Program 1 cr, engineering research credit, or any 200-level or above additional engineering technical elective lab experience.

6. Students very serious about medical school and learning about biology may select to apply for BIOCORE, a rigorous biology honors program:

 - BIOCORE 381 Evolution, Ecology, and Genetics
 - BIOCORE 382 Evolution, Ecology, and Genetics Laboratory
 - BIOCORE 383 Cellular Biology
 - BIOCORE 384 Cellular Biology Laboratory
 - BIOCORE 485 Organismal Biology
 - BIOCORE 486 Organismal Biology Laboratory

 The BIOCORE courses have limited enrollment and students must be accepted into this program (applying as freshman). It is generally advisable to complete the entire sequence once it is started. Only BIOCORE 382 Evolution, Ecology, and Genetics Laboratory is not required and is not necessary to fulfill premed requirements; however, it is recommended as it has been helpful in understanding the BIOCORE lab process. If all the other BIOCORE courses are taken (a total of 16 cr), this will replace the ZOOLOGY/BOTANY 101 Animal Biology and ZOOLOGY/BOTANY 102 Animal Biology Laboratory, the Advanced Life Science Elective, PHYSIOL 335 Physiology, and E P D 397 Technical Communication.

7. Students very serious about medical school and learning about biology may select to apply for BIOCORE, a rigorous biology honors program:

 - BIOCORE 381 Evolution, Ecology, and Genetics
 - BIOCORE 382 Evolution, Ecology, and Genetics Laboratory
 - BIOCORE 383 Cellular Biology
 - BIOCORE 384 Cellular Biology Laboratory
 - BIOCORE 485 Organismal Biology
 - BIOCORE 486 Organismal Biology Laboratory

 The BIOCORE courses have limited enrollment and students must be accepted into this program (applying as freshman). It is generally advisable to complete the entire sequence once it is started. Only BIOCORE 382 Evolution, Ecology, and Genetics Laboratory is not required and is not necessary to fulfill premed requirements; however, it is recommended as it has been helpful in understanding the BIOCORE lab process. If all the other BIOCORE courses are taken (a total of 16 cr), this will replace the ZOOLOGY/BOTANY 101 Animal Biology and ZOOLOGY/BOTANY 102 Animal Biology Laboratory, the Advanced Life Science Elective, PHYSIOL 335 Physiology, and E P D 397 Technical Communication.

8. The three core courses are all required: B M E 310 Bioinstrumentation, B M E 315 Biomechanics, B M E/PHM SCI 430 Biological Interactions with Materials, but they can be taken in any order. It is recommended that students take one in the track of interest first, or as early as possible.

9. Students interested in going to medical school should use this space/credits for BIOCHEM 501 Introduction to Biochemistry which is required for the MCAT.

Advising and Careers

Advising

Each College of Engineering program has academic advisors dedicated to serving its students. Program advisors can help current College of Engineering students with questions about accessing courses, navigating degree requirements, resolving academic issues and more. Students can find their assigned advisor on the homepage of their student center.

Engineering Career Services

Engineering Career Services (ECS) assists students in identifying pre-professional work-based learning experiences such as co-ops and summer internships, considering and applying to graduate or professional school, and finding full-time professional employment during their graduation year.
ECS offers two major career fairs per year, assists with resume writing and interviewing skills, hosts workshops on the job search, and meets one-on-one with students to discuss offer negotiations.

Students are encouraged to utilize the ECS office early in their academic careers. For comprehensive information on ECS programs and workshops, see the ECS website or call 608-262-3471.

PEOPLE

FACULTY
- Williams (chair)
- Ashton
- Beebe
- Block
- Brace
- Campagnola
- Chesler
- Gong
- Huiskan
- Keely
- Kreeger
- Li
- McClean
- Masters
- Meyerand
- Murphy
- Rogers
- Saha
- Skala
- Thelen
- Tompkins
- Vanderby
- Webster

INSTRUCTIONAL STAFF AND FACULTY ASSOCIATES
- Nimunkar
- J. Puccinelli
- T. Puccinelli
- Suminski
- Towles
- Tyler

See also the BME Directory (http://directory.engr.wisc.edu/bme).