CONSERVATION BIOLOGY, B.A.

Conservation biology is a science-based major designed to provide students broad training in biological, ecological, and related disciplines most relevant to conservation. The program emphasizes basic knowledge of natural history, whole organism biology, ecological interactions, and field biology. The major is characterized by flexibility with a broad range of opportunities allowing students to tailor the program to their interests. This major appeals to independent students capable of assembling a curriculum that takes maximum advantage of both strong background, diversity, and specialization, as well as the breadth available through an L&S major. The program has a unique appeal to students passionate about conservation biology, from the social scientist to the theoretical ecologist, and empowers students to act as informed citizens of the natural world.

Aldo Leopold, former UW professor considered the father of wildlife management, and Norman Fassett, former UW professor of Botany, first initiated this major in the 1940s to prepare individuals for careers as game wardens, ranger naturalists, and museum workers. These opportunities continue and have expanded to include work in environmental education, forest, game and park management; endangered species research and recovery efforts; work with private conservation organizations and government agencies; and many more. The major is recommended for those seeking a liberal education in the intrinsic values of natural resources and those preparing for graduate study in the rapidly developing field of conservation biology.

INTERNERNSHIP/FIELD EXPERIENCE

Students in the conservation biology major are encouraged to take field courses when possible (including suitable study abroad programs) and to gain additional experience via summer jobs and paid or unpaid internships. Students who wish to obtain academic credit for such an experience should arrange in advance to take a Directed Study (e.g., BOTANY 699 Directed Study or ZOOLOGY 699 Directed Studies in Zoology course) as elective work in the major during or immediately after their internship. A maximum of 10 credits of directed study (698, 699), senior honors thesis (681, 682), senior thesis (691,692), or internships (F&W ECOL 399 Coordinative Internship/Cooperative Education, ZOOLOGY 677 Internship in Ecology) will count toward the major.

HOW TO GET IN

To declare the conservation biology major, students must contact or make an appointment (http://conservationbiology.ls.wisc.edu/faqs.htm) with the conservation biology student services coordinator.

If students are not currently in the College of Letters & Science (L&S), they must transfer into L&S before declaring. Students are welcome to meet with the conservation biology student services coordinator to discuss the major before transferring.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatetestudytext) section of the Guide.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Detail</th>
</tr>
</thead>
</table>
| General Education | • Breadth—Humanities/Literature/Arts: 6 credits
• Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
• Breadth—Social Studies: 3 credits
• Communication Part A & Part B *
• Ethnic Studies *
• Quantitative Reasoning Part A & Part B * |

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

COLLEGE OF LETTERS & SCIENCE BREADTH AND DEGREE REQUIREMENTS: BACHELOR OF ARTS (B.A.)

Students pursuing a bachelor of arts degree in the College of Letters & Science must complete all of the requirements below. The College of Letters & Science allows this major to be paired with either a bachelor of arts or a bachelor of science curriculum. View a comparison of the degree requirements here. (https://pubs.wisc.edu/home/archives/ug15/images/babs2009.pdf)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>Fulfilled with completion of University General Education requirements Quantitative Reasoning a (QR A) and Quantitative Reasoning b (QR B) coursework. Please note that some majors may require students to complete additional math coursework beyond the B.A. mathematics requirement.</td>
</tr>
</tbody>
</table>
| Foreign Language | • Complete the fourth unit of a foreign language; OR
• Complete the third unit of a foreign language and the second unit of an additional foreign language
Note: A unit is one year of high school work or one semester/term of college work. |
L&S Breadth

- Humanities, 12 credits: 6 of the 12 credits must be in literature
- Social Sciences, 12 credits
- Natural Sciences, 12 credits: must include one 3+ credit course in the biological sciences; must include one 3+ credit course in the physical sciences

Liberal Arts and Science Coursework

108 credits

Depth of Intermediate/Advanced work

60 intermediate or advanced credits

Major

Declare and complete at least one (1) major

Total Credits

120 credits

UW-Madison Experience

30 credits in residence, overall

Minimum GPAs

2.000 in all coursework at UW–Madison

2.000 in intermediate/advanced coursework at UW–Madison

NON–L&S STUDENTS PURSUING AN L&S MAJOR

Non–L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements and do not need to complete the L&S breadth and degree requirements above.

REQUIREMENTS FOR THE MAJOR

Conservation biology majors must take at least 50 credits in the major.

When selecting courses to meet major requirements, students are encouraged to meet with their faculty advisor or student services coordinator to discuss courses that align with their areas of academic interest.

INTRODUCTORY COURSES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY/</td>
<td>Introductory Biology</td>
<td>10</td>
</tr>
<tr>
<td>BOTANY/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td>BOTANY/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOCORE 381</td>
<td>Evolution, Ecology, and Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 382</td>
<td>Evolution, Ecology, and Genetics Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 383</td>
<td>Cellular Biology</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 384</td>
<td>Cellular Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 485</td>
<td>Organismal Biology</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 486</td>
<td>Organismal Biology Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Chemistry

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 103</td>
<td>General Chemistry I</td>
<td>4-5</td>
</tr>
<tr>
<td>CHEM 108</td>
<td>Chemistry in Our World</td>
<td></td>
</tr>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

Physical Environment

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM OCN/GEOSCI 105</td>
<td>Survey of Oceanography</td>
<td>3-5</td>
</tr>
<tr>
<td>ENVIR ST/GEOSCI 106</td>
<td>Environmental Geology</td>
<td></td>
</tr>
<tr>
<td>ENVIR ST/GEOSCI 120</td>
<td>Introduction to the Earth System</td>
<td></td>
</tr>
<tr>
<td>ENVIR ST/GEOSCI 106</td>
<td>Environmental Geology</td>
<td></td>
</tr>
<tr>
<td>GEOSCI 100</td>
<td>General Geology</td>
<td></td>
</tr>
<tr>
<td>GEOSCI 107</td>
<td>Life of the Past</td>
<td></td>
</tr>
<tr>
<td>GEOSCI 202</td>
<td>Introduction to Geologic Structures</td>
<td></td>
</tr>
<tr>
<td>GEOSCI 204</td>
<td>Geologic Evolution of the Earth</td>
<td></td>
</tr>
</tbody>
</table>

Ecology and Evolution

Select two of the following, each from a different category (students are encouraged to take courses in all three areas):

Ecology:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTANY/</td>
<td>General Ecology</td>
<td>6-7</td>
</tr>
<tr>
<td>F&W ECOL/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 460</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evolution:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOSCI 110</td>
<td>Evolution and Extinction</td>
<td></td>
</tr>
<tr>
<td>or ANTHRO/</td>
<td>Evolutionary Biology</td>
<td></td>
</tr>
<tr>
<td>BOTANY/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 410</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extinction:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVIR ST/F&W ECOL/ZOOLOGY 360</td>
<td>Extinction of Species</td>
<td></td>
</tr>
</tbody>
</table>

Statistics

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 371</td>
<td>Introductory Applied Statistics for the Life Sciences</td>
<td></td>
</tr>
<tr>
<td>STAT 301</td>
<td>Introduction to Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>STAT/F&W ECOL/HORT 571</td>
<td>Statistical Methods for Bioscience</td>
<td></td>
</tr>
</tbody>
</table>

SPECIES & FIELD BIOLOGY

Select 12 credits from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY/</td>
<td>Animal Biology</td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/</td>
<td>Animal Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/</td>
<td>General Botany</td>
<td></td>
</tr>
<tr>
<td>BOTANY 130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AGRONOMY/ BOTANY/ SOIL SCI 370
Grassland Ecology

ENTOM/ ZOOLOGY 371
Medical Entomology

AN SCI/ F&W ECOL/ ZOOLOGY 520
Ornithology

AN SCI/ F&W ECOL/ ZOOLOGY 521
Birds of Southern Wisconsin

ANTHRO 391
Bones for the Archaeologist

ANTHRO 458
Primate Behavioral Ecology

ANTHRO 668
Primate Conservation

BOTANY 330
Algae

BOTANY/ PL PATH 332
Fungi

BOTANY 400
Plant Systematics

BOTANY 401
Vascular Flora of Wisconsin

BOTANY/ F&W ECOL 402
Dendrology

BOTANY 403
Field Collections and Identification

BOTANY 422
Plant Geography

BOTANY/ F&W ECOL 455
The Vegetation of Wisconsin

BOTANY/ENTOM/ ZOOLOGY 473
Plant-Insect Interactions

ENTOM/ ZOOLOGY 302
Introduction to Entomology

ENTOM 331
Taxonomy of Mature Insects

ENTOM 342
Insect Ecology

ENTOM 432
Taxonomy and Bionomics of Immature Insects

ENTOM 468
Studies in Field Entomology

ENTOM/ ZOOLOGY 530
Insect Behavior

ENVR ST/ ZOOLOGY 315
Limbology-Conservation of Aquatic Resources

ENVR ST 375
Field Ecology Workshop

ENVR ST/ ZOOLOGY 510
Ecology of Fishes

ENVR ST/ ZOOLOGY 511
Ecology of Fishes Lab

F&W ECOL 306
Terrestrial Vertebrates: Life History and Ecology

F&W ECOL 401
Physiological Animal Ecology

F&W ECOL/ SURG SCI 548
Diseases of Wildlife

F&W ECOL 655
Animal Population Dynamics

GEO SCI 333
The Age of Dinosaurs

GEO SCI/ ZOOLOGY 541
Paleobiology

GEO SCI/ ZOOLOGY 542
Invertebrate Paleontology

HORT 370
World Vegetable Crops

LAND ARC/ ENVIR ST 361
Wetlands Ecology

MICROBIO 303
Biology of Microorganisms

MICROBIO 304
Biology of Microorganisms Laboratory

M M & I/ENTOM/ PATH-BIO/ ZOOLOGY 350
Parasitology

M M & I/ PATH-BIO/ ZOOLOGY 351
Parasitology Laboratory

PSYCH 449
Animal Behavior

PSYCH 450
Primates and Us: Insights into Human Biology and Behavior

ZOOLOGY/ ENVIR ST 315
Limnology-Conservation of Aquatic Resources

ZOOLOGY 316
Laboratory for Limnology-Conservation of Aquatic Resources

ZOOLOGY 430
Comparative Anatomy of Vertebrates

1 Students may apply both ZOOLOGY 425 Behavioral Ecology and PSYCH 449 Animal Behavior in the conservation biology program.

ELECTIVES

#### Code	Title
A A E 215 | Introduction to Agricultural and Applied Economics |
A A E/ ENVIR ST 244 | The Environment and the Global Economy |
C&E SOC/ SOC 140 | Introduction to Community and Environmental Sociology |
C&E SOC/ F&W ECOL/ SOC 248 | Environment, Natural Resources, and Society |
ECON 101 | Principles of Microeconomics |
ECON/ENVIR ST/ POLI SCI/ URB R PL 449 | Government and Natural Resources |
ENVR ST/ GEOG 139 | Living in the Global Environment: An Introduction to People-Environment Geography |
ENVR ST/ GEOG 339 | Environmental Conservation |
ENVR ST/ M&ENVTOX/ PL PATH 368 | Environmental Law, Toxic Substances, and Conservation |
ENVR ST/ PHILOS 441 | Environmental Ethics |
ENVR ST/GEOG/ HISTORY 460 | American Environmental History |
ENVR ST/GEOG/ HISTORY 469 | The Making of the American Landscape |
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 344</td>
<td>The American West</td>
</tr>
<tr>
<td>GEOG 359</td>
<td>Australia: Environment and Society</td>
</tr>
<tr>
<td>GEOG 538</td>
<td>The Humid Tropics: Ecology, Subsistence, and Development</td>
</tr>
</tbody>
</table>

Electives to attain 50 credits in the major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRONOMY/HORT 328</td>
<td>Integrated Weed Management</td>
</tr>
<tr>
<td>AGRONOMY/ENTOM/F&W ECOL/M&ENVTOX 632</td>
<td>Ecotoxicology: The Chemical Players</td>
</tr>
<tr>
<td>AGRONOMY/ENTOM/F&W ECOL/M&ENVTOX 633</td>
<td>Ecotoxicology: Impacts on Individuals</td>
</tr>
<tr>
<td>AGRONOMY/ENTOM/F&W ECOL/M&ENVTOX 634</td>
<td>Ecotoxicology: Impacts on Populations, Communities and Ecosystems</td>
</tr>
<tr>
<td>ANTHRO 658</td>
<td>Ecological Models of Behavior</td>
</tr>
<tr>
<td>ATM OCN 100</td>
<td>Weather and Climate</td>
</tr>
<tr>
<td>ATM OCN 101</td>
<td>Weather and Climate</td>
</tr>
<tr>
<td>ATM OCN/ENVIR ST/GEOG 121</td>
<td>Atmospheric Environment and Society</td>
</tr>
<tr>
<td>ATM OCN/ENVIR ST 171</td>
<td>Global Change: Atmospheric Issues and Problems</td>
</tr>
<tr>
<td>BOTANY/PL PATH 123</td>
<td>Plants, Parasites, and People</td>
</tr>
<tr>
<td>BOTANY/ENVIR ST/ZOOLOGY 260</td>
<td>Introductory Ecology</td>
</tr>
<tr>
<td>BOTANY 300</td>
<td>Plant Anatomy</td>
</tr>
<tr>
<td>BOTANY 305</td>
<td>Plant Morphology and Evolution</td>
</tr>
<tr>
<td>BOTANY/ZOOLOGY 450</td>
<td>Midwestern Ecological Issues: A Case Study Approach</td>
</tr>
<tr>
<td>BOTANY/ENTOM/PL PATH 505</td>
<td>Plant-Microbe Interactions: Molecular and Ecological Aspects</td>
</tr>
<tr>
<td>BOTANY/ENVIR ST/F&W ECOL/ZOOLOGY 651</td>
<td>Conservation Biology</td>
</tr>
<tr>
<td>C&E SOC/ENVIR ST/GEOG 434</td>
<td>People, Wildlife and Landscapes</td>
</tr>
<tr>
<td>ENTOM/ZOOLOGY 540</td>
<td>Theoretical Ecology</td>
</tr>
<tr>
<td>ENTOM 699</td>
<td>Special Problems</td>
</tr>
<tr>
<td>ENVIR ST/ILS 126</td>
<td>Principles of Environmental Science</td>
</tr>
<tr>
<td>ENVIR ST/GEOG/SOIL SCI 230</td>
<td>Soil: Ecosystem and Resource Methods</td>
</tr>
<tr>
<td>ENVIR ST 307</td>
<td>Literature of the Environment: Speaking for Nature</td>
</tr>
<tr>
<td>ENVIR ST/SOIL SCI 324</td>
<td>Soils and Environmental Quality</td>
</tr>
<tr>
<td>ENVIR ST/LAND ARC 361</td>
<td>Wetlands Ecology</td>
</tr>
<tr>
<td>ENVIR ST/CIV ENGR/GEOG 377</td>
<td>An Introduction to Geographic Information Systems</td>
</tr>
<tr>
<td>ENVIR ST/POP HLTH 471</td>
<td>Introduction to Environmental Health</td>
</tr>
<tr>
<td>ENVIR ST/PHYSICS 472</td>
<td>Scientific Background to Global Environmental Problems</td>
</tr>
<tr>
<td>ENVIR ST/F&W ECOL 515</td>
<td>Natural Resources Policy</td>
</tr>
<tr>
<td>ENVIR ST/GEOG 537</td>
<td>Culture and Environment</td>
</tr>
<tr>
<td>ENVIR ST/SOIL SCI 575</td>
<td>Assessment of Environmental Impact</td>
</tr>
<tr>
<td>F&W ECOL/ZOOLOGY 335</td>
<td>Human/Animal Relationships: Biological and Philosophical Issues</td>
</tr>
<tr>
<td>F&W ECOL 379</td>
<td>Principles of Wildlife Management</td>
</tr>
<tr>
<td>F&W ECOL 410</td>
<td>Principles of Silviculture</td>
</tr>
<tr>
<td>F&W ECOL 450</td>
<td>Communities and Forests</td>
</tr>
<tr>
<td>F&W ECOL 550</td>
<td>Forest Ecology</td>
</tr>
<tr>
<td>F&W ECOL 561</td>
<td>Wildlife Management Techniques</td>
</tr>
<tr>
<td>F&W ECOL/LAND ARC/ZOOLOGY 565</td>
<td>Principles of Landscape Ecology</td>
</tr>
<tr>
<td>F&W ECOL/HORT/STAT 571</td>
<td>Colloquium in Environmental Toxicology</td>
</tr>
<tr>
<td>F&W ECOL/ENTOM/M&ENVTOX/PL PATH/SOIL SCI 606</td>
<td>Special Problems</td>
</tr>
<tr>
<td>GENETICS 466</td>
<td>Principles of Genetics</td>
</tr>
<tr>
<td>GEOG/GEOSCI 320</td>
<td>Geomorphology</td>
</tr>
<tr>
<td>GEOG/GEOSCI 420</td>
<td>Glacial and Pleistocene Geology</td>
</tr>
<tr>
<td>GEOSCI/G L E 627</td>
<td>Hydrogeology</td>
</tr>
<tr>
<td>LAND ARC 262</td>
<td>Landscape Inventory and Evaluation Methods</td>
</tr>
<tr>
<td>MICROBIO 101</td>
<td>General Microbiology</td>
</tr>
<tr>
<td>MICROBIO 102</td>
<td>General Microbiology Laboratory</td>
</tr>
<tr>
<td>PSYCH 606</td>
<td>Hormones and Behavior</td>
</tr>
<tr>
<td>SOIL SCI 301</td>
<td>General Soil Science</td>
</tr>
<tr>
<td>STAT/F&W ECOL/HORT 572</td>
<td>Statistical Methods for Bioscience II</td>
</tr>
<tr>
<td>ZOOLOGY 535</td>
<td>Ecosystem Analysis</td>
</tr>
</tbody>
</table>

RESIDENCE AND QUALITY OF WORK

2.000 GPA in all major courses

2.000 GPA on 15 upper-level major credits, taken in residence

15 credits in the major, taken on the UW–Madison campus

1 Courses in the major numbered 300 through 699 are considered upper level.
HONORS IN THE MAJOR
Students may declare Honors in the Conservation Biology Major in consultation with the Conservation Biology undergraduate advisor.

HONORS IN THE CONSERVATION BIOLOGY MAJOR REQUIREMENTS
To earn a B.A. or B.S. with Honors in the Major in Conservation Biology students must satisfy both the requirements for the major (above) and the following additional requirements:

- Earn a 3.300 overall university GPA
- Complete at least 16 credits, taken for Honors, in the conservation biology major, to include a two-semester Senior Honors Thesis in an appropriate department

Examples include Botany, Zoology, Environmental Studies; see the Conservation Biology advisor to verify that your thesis department will be acceptable.

UNIVERSITY DEGREE REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Degree</td>
<td>To receive a bachelor’s degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.</td>
</tr>
<tr>
<td>Residency</td>
<td>Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. "In residence" credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.</td>
</tr>
<tr>
<td>Quality of Work</td>
<td>Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.</td>
</tr>
</tbody>
</table>

LEARNING OUTCOMES

1. Students will explain the basic concepts of ecology and evolution and how they underpin and apply to the science of conservation biology.
2. Students will understand and explain the scientific process as related to conservation biology, including the relevance of theories and how hypotheses are tested.
3. Students will recognize species within some particular group of organisms and explain key aspects of their ecology, phylogeny, and conservation needs.
4. Students will apply general ecological principles to assess and address conservation threats to particular species, communities, and ecosystems.
5. Students will investigate and communicate the connections between the biological and social sciences and humanities as they affect conservation programs and activities.
6. Students will identify, interpret, and communicate conservation ideas, needs and programs to others.

ADVISING AND CAREERS

ADVISING
Students in the conservation biology major are assigned to a team of advisors composed of a faculty advisor and the major’s student services coordinator. See the major’s advising page (http://conservationbiology.ls.wisc.edu/advising.htm) for a list of advisors and for the student services coordinator information.

The faculty advisor provides guidance specific to the discipline through discussions about undergraduate experiences (e.g., research, coursework, internships) that will help prepare students for graduate work or a career after graduation. The student services coordinator provides guidance specific to the discipline but helps students with major declarations, course selection, registration, DARS, L&S degree and major requirements, and tracking progress towards graduation, as well as connecting students with important resources on campus. Because the major is so broad and involves so much choice, it is important for students to meet early and regularly with their student services coordinator and faculty advisor.

Students contemplating graduate work in a biological discipline are advised to take the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY/BOTANY/ZOOLOGY</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/BOTANY/ZOOLOGY</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td>ANTHRO/BOTANY/ZOOLOGY</td>
<td>Evolutionary Biology</td>
<td></td>
</tr>
<tr>
<td>BOTANY/F&W ECOL/ZOOLOGY</td>
<td>General Ecology</td>
<td></td>
</tr>
<tr>
<td>CHEM 104</td>
<td>General Chemistry II</td>
<td></td>
</tr>
<tr>
<td>GENETICS 466</td>
<td>Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 103</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 104</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>MATH 221</td>
<td>Calculus and Analytic Geometry I</td>
<td></td>
</tr>
</tbody>
</table>

Although not required for the major, such students are also encouraged to take the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>General Chemistry II</td>
<td></td>
</tr>
<tr>
<td>GENETICS</td>
<td>Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>MATH</td>
<td>Calculus and Analytic Geometry I</td>
<td></td>
</tr>
</tbody>
</table>

PEOPLE

Committee of Advisors: Givnish (Botany), Hotchkiss (Botany/Environmental Studies), Ives (Zoology), Strier (Anthropology), Vander Zanden (Center for Limnology/Zoology), Waller (Botany, chair of major)