BIOCHEMISTRY, BS (L&S)

Biochemistry is a very broad science that studies the molecules and chemistry of life. Biochemistry focuses on the structure, properties, and interactions of molecules such as proteins, nucleic acids, sugars and lipids. Biochemistry's aim is to understand how these molecules participate in the processes that support the various functions of the living cell. These studies are therefore essential for understanding disease and finding cures, for improving agriculture and the production of food and biofuels, and to produce innovation in biotechnology.

Whereas other biological science majors may focus on cellular, organismal, or population-level biology, biochemistry focuses on processes that occur at the molecular to cellular levels. Therefore, this major has a greater focus on basic and quantitative sciences, such as math and, particularly, on chemistry.

Biochemistry graduates go on to a variety of careers in science and science-related fields. The major is designed to fit the needs of the student who wishes to achieve bachelor's-level training as well as those planning to pursue graduate or professional study. The degree serves as an excellent background for medical school or veterinary school admission, as well as for graduate study in biochemistry or other allied fields (biology, bacteriology, genetics, molecular biology, or oncology).

HOW TO GET IN

HOW TO GET IN

Students may declare the major via an appointment with the undergraduate advisor at any time.

The Biochemistry major is offered through either CALS or the College of Letters & Science (L&S). Students interested in the differences or transferring between CALS and L&S should meet with the advisor to discuss this in more detail.

Students who attend Student Orientation, Advising, and Registration (SOAR) with the College of Agricultural and Life Sciences (CALS) have the option to declare biochemistry at SOAR. Students may otherwise declare after they have begun their undergraduate studies.

Students who intend to major in Biochemistry may not combine this major ("double major") with the Molecular and Cell Biology major.

REQUIREMENTS

UNIVERSITY GENERAL **EDUCATION REQUIREMENTS**

All undergraduate students at the University of Wisconsin-Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as

needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/ #requirementsforundergraduatestudytext) section of the Guide.

General Education

- · Breadth-Humanities/Literature/Arts: 6 credits
- · Breadth-Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- · Breadth-Social Studies: 3 credits
- · Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *
- * The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

COLLEGE OF LETTERS & SCIENCE DEGREE REQUIREMENTS: BACHELOR OF SCIENCE (BS)

Students pursuing a Bachelor of Science degree in the College of Letters & Science must complete all of the requirements below. The College of Letters & Science allows this major to be paired with either the Bachelor of Arts or the Bachelor of Science degree requirements.

BACHELOR OF SCIENCE DEGREE REQUIREMENTS

Mathematics Complete two courses of 3+ credits at the Intermediate or Advanced level in MATH, COMP SCI, or STAT subjects. A maximum of one course in each of COMP SCI and STAT subjects counts toward this requirement.

Language

Complete the third unit of a language other than English.

L&S Breadth

- 12 credits of Humanities, which must include at least 6 credits of Literature: and
- 12 credits of Social Science; and
- 12 credits of Natural Science, which must include 6 credits of Biological Science and 6 credits of Physical

Liberal Arts

Complete at least 108 credits.

and Science Coursework

Complete at least 60 credits at the Intermediate or Depth of Intermediate/ Advanced level.

Advanced

Coursework

Major Declare and complete at least one major.

Total Credits Complete at least 120 credits.

UW-Madison Complete both:

Experience

· 30 credits in residence, overall, and

• 30 credits in residence after the 86th credit.

Quality of • 2.000 in all coursework at UW-Madison

Work • 2.000 in Intermediate/Advanced level coursework at

UW-Madison

NON-L&S STUDENTS PURSUING AN L&S MAJOR

Non-L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements. They do not need to complete the L&S Degree Requirements above.

REQUIREMENTS FOR THE MAJOR

MATHEMATICS

Mathematics Requirements

	Code	Title	Credits
	Complete one of the	following options:	
	MATH 221 & MATH 222	Calculus and Analytic Geometry 1 and Calculus and Analytic Geometry 2	9
	MATH 171 & MATH 217 & MATH 222	Calculus with Algebra and Trigonometry I and Calculus with Algebra and Trigonometry II and Calculus and Analytic Geometry 2	14

CHEMISTRY

General Chemistry

Code	Title	Credits
Complete one sequer	nce:	
CHEM 103 & CHEM 104	General Chemistry I and General Chemistry II	9
CHEM 109	Advanced General Chemistry	5
CHEM 115 & CHEM 116	Chemical Principles I and Chemical Principles II (satisfies both general and analytical chemistry requirements)	10

Organic Chemistry

Code	Title	Credits
Complete All:		
CHEM 343	Organic Chemistry I	3
CHEM 344	Introductory Organic Chemistry Laboratory	2
CHEM 345	Organic Chemistry II	3

Analytical Chemistry

Code	Title	Credits
Complete one:		
CHEM 327	Fundamentals of Analytical Science	4
CHEM 329	Fundamentals of Analytical Science	4
CHEM 116	Chemical Principles II (satisfies both general and analytical chemistry requirements)	5

Physical Chemistry

Code	Title	
Complete one:		
CHEM 665	Biophysical Chemistry (Recommended)	3
CHEM 561 & CHEM 563	Physical Chemistry I and Physical Chemistry Laboratory I	4

BIOLOGY

Students must complete either Option A (introductory + upper-level biology), or Option B (biocore), for 16 total credits of biological science coursework.

Option A (Introductory and Upper-Level Biology) Option A Introductory Biology

Code	Title	Credits
Complete one of the options:	following introductory biology	
BIOLOGY/BOTANY/ ZOOLOGY 151 & BIOLOGY/ BOTANY/ ZOOLOGY 152	Introductory Biology and Introductory Biology (recommended)	10
BIOLOGY/ ZOOLOGY 101 & BIOLOGY/ ZOOLOGY 102 & BOTANY/ BIOLOGY 130	Animal Biology and Animal Biology Laboratory and General Botany	10

And Option A Upper-Level Biology

At least 6 credits of upper-level biological science coursework are required (to achieve 16 total credits—more than 6 credits may be required if introductory biology totals less than 10 credits due to transfer credits). Select from the course list below. To see courses offered in specific upcoming semesters, please see the biochemistry website (https://biochem.wisc.edu/undergraduate_program/advanced-biology-courses-undergraduate-program/).

Important: A course may not double count in both the "upper-level biology" and the "biochemistry" requirements for the major. Biochemistry courses on this list can count only for "upper-level biology" if they are above-and-beyond what is needed to fulfill the "biochemistry" portion of the major. For example, if students have taken BIOCHEM 501 (http://guide.wisc.edu/search/?P=BIOCHEM%20501), they will need one advanced biochemistry elective to fulfill the biochemistry requirement, and then any additional biochemistry courses taken can count for upper-level biology.

Code	Title	Credits
ANAT&PHY 335	Physiology	5
ANAT&PHY 337	Human Anatomy	3
ANAT&PHY 435	Fundamentals of Human Physiology	5
AGRONOMY 300	Cropping Systems	3
AGRONOMY 302	Forage Management and Utilization	3
AGRONOMY/HORT/ SOIL SCI 326	Plant Nutrition Management	3

AGRONOMY/ HORT 338	Plant Breeding and Biotechnology	3	BIOCHEM/ NUTR SCI 560	Principles of Human Disease and Biotechnology	2
AGRONOMY/	Plant Biotechnology: Principles and	4	BIOCHEM 570		3
BOTANY/HORT 339			BIOCHEM/	Biology of Viruses	2
AGRONOMY/ BOTANY/HORT 340	Plant Cell Culture and Genetic Engineering	3	M M & I 575 BIOCHEM 601	Protein and Enzyme Structure and	2
	World Hunger and Malnutrition	3		Function	
NUTR SCI 350			BIOCHEM/B M I/	Mathematical Methods for Systems	3
AGRONOMY/ BOTANY/ SOIL SCI 370	Grassland Ecology	3	BMOLCHEM/ MATH 609	Biology	2
AGRONOMY 377	Global Food Production and Health	3	BIOCHEM/ GENETICS/	Prokaryotic Molecular Biology	3
AGRONOMY/	Principles of Plant Breeding	3	MICROBIO 612		
HORT 501			BIOCHEM/	Advanced Nutrition: Intermediary	3
AGRONOMY/ ATM OCN/	Environmental Biophysics	3	NUTR SCI 619 BIOCHEM/	Metabolism of Macronutrients Eukaryotic Molecular Biology	3
SOIL SCI 532			GENETICS/		
AN SCI/ FOOD SCI 305	Introduction to Meat Science and Technology	4	MD GENET 620 BIOCHEM/	Plant Biochemistry	3
AN SCI/DY SCI/	Comparative Animal Nutrition	3	BOTANY 621	Plant Biochemistry	3
NUTR SCI 311	Comparative Animal Nutrition	3	BIOCHEM 625	Mechanisms of Action of Vitamins	2
AN SCI 314	Poultry Nutrition	3		and Minerals	
AN SCI/DY SCI 320	Animal Health and Disease	3	BIOCHEM/	Molecular Control of Metabolism	3
	Introduction to Animal and	2	NUTR SCI 645	and Metabolic Disease	
AN SCI/DY SCI 362	Veterinary Genetics	2	BSE 349	Quantitative Techniques for Biological Systems	3
	Principles of Animal Breeding	2	BSE 364	Engineering Properties of Food and	3
•	Livestock Production and Health in	3		Biological Materials	
	Agricultural Development		BSE 365	Measurements and Instrumentation for Biological Systems	3
,	Ruminant Nutrition & Metabolism	3	BSE/ENVIR ST 367		3
AN SCI 415	Application of Monogastric Nutrition Principles	2	BSE 460	Biorefining: Energy and Products from Renewable Resources	3
AN SCI 431	Beef Cattle Production	3	BSE 461	Food and Bioprocessing Operations	3
AN SCI 432	Swine Production	3	BSE 472	Sediment and Bio-Nutrient	3
	Reproductive Physiology	3	3022	Engineering and Management	
AN SCI 503	Avian Physiology	3	BMOLCHEM/	Microbiology at Atomic Resolution	3
AN SCI 508	Poultry Products Technology	3	MICROBIO 668		
AN SCI 511	Breeder Flock and Hatchery Management	3	BMI/STAT 541	Introduction to Biostatistics	3
AN SCI 512	Management for Avian Health	3	BMI/	Introduction to Bioinformatics	3
AN SCI/	Commercial Meat Processing	2	COMP SCI 576	Discret Acceptance	4
FOOD SCI 515		_	BOTANY 300 BOTANY 305	Plant Anatomy Plant Morphology and Evolution	4
AN SCI/F&W ECOL/	Ornithology	3	BOTANY 330	Algae	3
ZOOLOGY 520	Diedo of Courthous Wisconsin	2	BOTANY/	Fungi	4
ZOOLOGY 521	Birds of Southern Wisconsin	3	PL PATH 332		
AN SCI 610	Quantitative Genetics	3	BOTANY/	Plant Biotechnology: Principles and	4
AN SCI/ NUTR SCI 626	Experimental Diet Design	1	AGRONOMY/ HORT 339	Techniques I	
B M E/MED PHYS/	Microscopy of Life	3	BOTANY 400	Plant Systematics	4
PHMCOL-	3555р., б. 💴	5	BOTANY 401	Vascular Flora of Wisconsin	4
M/PHYSICS/			BOTANY/	Dendrology: Woody Plant	3
RADIOL 619			F&W ECOL 402	Identification and Ecology	2
BIOCHEM/ NUTR SCI 510	Nutritional Biochemistry and Metabolism	3	BOTANY/ANTHRO/ ZOOLOGY 410	Evolutionary Biology	3
			BOTANY 422	Plant Geography	3

Biochemistry, BS (L&S)

4

BOTANY/ F&W ECOL 455	The Vegetation of Wisconsin	4	ENVIR ST/ ATM OCN 520	Bioclimatology	3
BOTANY/ F&W ECOL/	General Ecology	4	FOOD SCI/ MICROBIO 324	Food Microbiology Laboratory	2
ZOOLOGY 460 BOTANY/ENTOM/	Plant-Insect Interactions	3	FOOD SCI/ MICROBIO 325	Food Microbiology	3
ZOOLOGY 473			FOOD SCI 410	Food Chemistry	3
BOTANY/AMER IND/	Ethnobotany	3-4	FOOD SCI 440	Principles of Food Engineering	3
ANTHRO 474			FOOD SCI 511	Chemistry and Technology of Dairy	3
BOTANY 500	Plant Physiology	3-4		Products	
BOTANY/ENTOM/	Plant-Microbe Interactions:	3	FOOD SCI 514	Integrated Food Functionality	4
PL PATH 505	Molecular and Ecological Aspects	2	FOOD SCI 550	Fermented Foods and Beverages	2
BOTANY/ PL PATH 563	Phylogenetic Analysis of Molecular Data	3	FOOD SCI 611	Chemistry and Technology of Dairy Products	3
BOTANY/HORT/	Mineral Nutrition of Plants	3	F&W ECOL 300	Forest Measurements	4
SOIL SCI 626 BOTANY/ENVIR ST/	Conservation Biology	3	F&W ECOL 306	Terrestrial Vertebrates: Life History and Ecology	4
F&W ECOL/			F&W ECOL 318	Principles of Wildlife Ecology	3
ZOOLOGY 651	Dialam and Constitut of Found	2	F&W ECOL/	Human/Animal Relationships:	3
BOTANY/ GENETICS/M M & I/	Biology and Genetics of Fungi	3	ZOOLOGY 335	Biological and Philosophical Issues	
PL PATH 655			F&W ECOL/	Extinction of Species	3
BOTANY/	Adaptive Restoration Lab	2	ENVIR ST/		
LAND ARC 670	·		ZOOLOGY 360		_
CHEM 575	Advanced Topics in Chemistry	1-4	F&W ECOL 379	Principles of Wildlife Management	3
	(Topics in Chemical Biology)		F&W ECOL 401	Physiological Animal Ecology	3
CRB 625	Stem Cell Seminar	1	F&W ECOL 404	D	3
CRB 640	Fundamentals of Stem Cell and	3	F&W ECOL 410	Principles of Silviculture	3
	Regenerative Biology	_	F&W ECOL 415	Tree Physiology	3
CRB 650	Molecular and Cellular Organogenesis	3	F&W ECOL/ SURG SCI 548	Diseases of Wildlife	3
DY SCI 378	Lactation Physiology	3	F&W ECOL 550	Forest Ecology	3
DY SCI 535	Dairy Farm Management Practicum	3	F&W ECOL 561	Wildlife Management Techniques	3
ENTOM/ ZOOLOGY 302	Introduction to Entomology	4	F&W ECOL/ LAND ARC/	Principles of Landscape Ecology	2
ENTOM 321	Physiology of Insects	3	ZOOLOGY 565		
ENTOM 331	Taxonomy of Mature Insects	4	F&W ECOL 590	Integrated Resource Management	3
ENTOM 351	Principles of Economic Entomology	3	F&W ECOL 632		1
ENTOM/	Medical Entomology: Biology of	3	F&W ECOL 633		1
ZOOLOGY 371	Vector and Vector-borne Diseases		F&W ECOL 634		1
ENTOM 432	Taxonomy and Bionomics of Immature Insects	4	F&W ECOL/ A A E 652	Decision Methods for Natural Resource Managers	3
ENTOM 500		2	F&W ECOL 655	Animal Population Dynamics	3
ENTOM/ ZOOLOGY 540	Theoretical Ecology	3	GEN&WS 533	Special Topics in Gender and Biology	3
ENTOM/GENETICS/ ZOOLOGY 624	Molecular Ecology	3	GENETICS 466 GENETICS 467	Principles of Genetics General Genetics 1	3
ENVIR ST/	Wetlands Ecology	3	GENETICS 468	General Genetics 2	3
LAND ARC 361	-		GENETICS 525	Epigenetics	3
ENVIR ST/	Introduction to Environmental	3	GENETICS 545	Genetics Laboratory	2
POP HLTH 471	Health		GENETICS/	Molecular Approaches for Potential	3
ENVIR ST/ POP HLTH 502	Air Pollution and Human Health	3	HORT 550	Crop Improvement	
ENVIR ST/ F&W ECOL 515	Natural Resources Policy	3	GENETICS/ MD GENET 565	Human Genetics	3
I GVV LOOL JIJ			GENETICS 566	Advanced Genetics	3
			HORT 320	Environment of Horticultural Plants	3

HORT/ AGRONOMY 501	Principles of Plant Breeding	3	ONCOLOGY 401	Introduction to Experimental Oncology	2
M M & I 301	Pathogenic Bacteriology	2	ONCOLOGY/	Toxicology I	3
M M & I 341	Immunology	3	M&ENVTOX/		
M M & I/ENTOM/ PATH-BIO/	Parasitology	3	PHM SCI/PHMCOL- M/POP HLTH 625		
ZOOLOGY 350			PHM SCI 310	Drugs and Their Actions	2
M M & I/PATH-	Immunology	3		Biological Interactions with Materials	3
BIO 528			PHYSICS/B M E/	Microscopy of Life	3
M M & I 554	Emerging Infectious Diseases and Bioterrorism	2	MED PHYS/ PHMCOL-M/		
MED PHYS/	Radiobiology	2-3	RADIOL 619 PL PATH 300	Introduction to Diant Dath along	1
H ONCOL 410			PL PATH/	Introduction to Plant Pathology Soil Biology	3
MED PHYS/ B M E/H ONCOL/	Radiation Physics and Dosimetry	3	SOIL SCI 323	•	2-3
PHYSICS 501	Distance of Missassassians	2	PL PATH 517	Plant Disease Resistance	
MICROBIO 303	Biology of Microorganisms	3	PL PATH 558	D: (E : D :	3
MICROBIO 304	Biology of Microorganisms Laboratory	2	PL PATH 559	Diseases of Economic Plants	3
MICROBIO 305	Critical Analyses in Microbiology	1	PL PATH 602	Ecology, Epidemiology and Control of Plant Diseases	3
MICROBIO 330	Critical Arialyses in Microbiology	3	PL PATH 622	Plant-Bacterial Interactions	2-3
MICROBIO/AN SCI/	The Microbiome of Plants, Animals,	3	PL PATH/M M & I/	General Virology-Multiplication of	3
BOTANY 335	and Humans	2	ONCOLOGY 640	Viruses	2
MICROBIO 345	Introduction to Disease Biology	3	PSYCH 454	Behavioral Neuroscience	3
MICROBIO 357	General Bioinformatics for Microbiologists	3	PSYCH 513	Hormones, Brain, and Behavior	4
MICROBIO/	Environmental Microbiology	3	PSYCH 612	Neuropharmacology	3
SOIL SCI 425			SOIL SCI/ F&W ECOL 451	Environmental Biogeochemistry	3
MICROBIO 450	Diversity, Ecology and Evolution of Microorganisms	3	SOIL SCI 623		3
MICROBIO 470	Microbial Genetics & Molecular Machines	3	SOIL SCI/ CIV ENGR/ M&ENVTOX 631	Toxicants in the Environment: Sources, Distribution, Fate, &	3
MICROBIO 520	Planetary Microbiology: What Life	3		Effects	2
MICROBIO 320	Here Tells Us About Life Out There		ZOOLOGY 300 ZOOLOGY 301	Invertebrate Biology and Evolution Invertebrate Biology and Evolution	3
MICROBIO/ SOIL SCI 523	Soil Microbiology and Biochemistry	3		Lab	
MICROBIO 525	Field Studies of Planetary	3	ZOOLOGY 304	Marine Biology	2
MICRODIO 323	Microbiology and Life in the Universe	3	ZOOLOGY/ ENVIR ST 315	Limnology-Conservation of Aquatic Resources	2
MICROBIO 526	Physiology of Microorganisms	3	ZOOLOGY 316	Laboratory for Limnology- Conservation of Aquatic Resources	2-3
MICROBIO 527	Advanced Laboratory Techniques in	2	ZOOLOGY 425	Behavioral Ecology	3
MICROBIO 551	Microbiology Capstone Research Project in	2	ZOOLOGY 430	Comparative Anatomy of Vertebrates	5
	Microbiology		ZOOLOGY 470	Introduction to Animal Development	3
MICROBIO 607		3	ZOOLOGY 504		3-5
MICROBIO 626	Microbial and Cellular Metabolomics	3	ZOOLOGY/	Ecology of Fishes	3
MICROBIO 632		2	ENVIRST 510		
NTP/ NEURODPT 610	Cellular and Molecular Neuroscience	4	ZOOLOGY/ ENVIR ST 511	Ecology of Fishes Lab	2
NTP/NEURODPT/ PSYCH 611	Systems Neuroscience	4	ZOOLOGY/ PSYCH 523	Neurobiology	3
NTP/ NEURODPT 629	Molecular and Cellular Mechanisms of Memory	3	ZOOLOGY/ GEOSCI 541	Paleobiology	3
NUTR SCI 332	Human Nutritional Needs	3	ZOOLOGY/	Invertebrate Paleontology	3
NUTR SCI 431	Nutrition in the Life Span	3	GEOSCI 542		3

ZOOLOGY 555	Laboratory in Developmental Biology	3
ZOOLOGY 570	Cell Biology	3
ZOOLOGY 603	Endocrinology	3-4
ZOOLOGY 611	Comparative and Evolutionary Physiology	3
ZOOLOGY 612	Comparative Physiology Laboratory	2
ZOOLOGY/ ANTHRO/NTP/ PSYCH 619	Biology of Mind	3
ZOOLOGY 625	Development of the Nervous System	2

Option B (Biocore)

Biocore is an honors-level, integrated sequence of lecture and lab courses that covers introductory and intermediate biology topics. Students must apply and be accepted to the program to take BIOCORE classes.

Code	Title	Credits
Complete these lect	ture courses:	
BIOCORE 381	Evolution, Ecology, and Genetics	3
BIOCORE 383	Cellular Biology	3
BIOCORE 485	Principles of Physiology	3
BIOCORE 587	Biological Interactions	3
Complete two of the	ese lab classes:	4
BIOCORE 382	Evolution, Ecology, and Genetics Laboratory	
BIOCORE 384	Cellular Biology Laboratory	
BIOCORE 486	Principles of Physiology Laboratory	
Total Credits	16	

PHYSICS (CALCULUS-BASED)

Physics Requirements

Code	Title	Credits
Complete one of the	following options: ¹	
PHYSICS 207 & PHYSICS 208	General Physics and General Physics (recommended)	10
PHYSICS 201 & PHYSICS 202	General Physics and General Physics	10

BIOCHEMISTRY

One set of introductory coursework and the capstone course are required, for a total of three BIOCHEM courses.

ı	n	τr	0	a	uc	T(or	У	C	O	ur	S	es

Code	Title	Credits
Select one of the f	ollowing options:	
BIOCHEM 507 & BIOCHEM 508	General Biochemistry I and General Biochemistry II (recommended)	6-7
OR		
BIOCHEM 501	Introduction to Biochemistry	3
And one of the follo	wing advanced biochemistry electives:	
BIOCHEM/ NUTR SCI 510	Nutritional Biochemistry and Metabolism	

	BIOCHEM/ NUTR SCI 560	Principles of Human Disease and Biotechnology
	BIOCHEM 570	
	BIOCHEM/ M M & I 575	Biology of Viruses
	BIOCHEM 601	Protein and Enzyme Structure and Function
	BIOCHEM/B M I/ BMOLCHEM/ MATH 609	Mathematical Methods for Systems Biology
	BIOCHEM/ GENETICS/ MICROBIO 612	Prokaryotic Molecular Biology
	BIOCHEM/ GENETICS/ MD GENET 620	Eukaryotic Molecular Biology
	BIOCHEM/ BOTANY 621	Plant Biochemistry
	BIOCHEM 625	Mechanisms of Action of Vitamins and Minerals
	BIOCHEM/ NUTR SCI 645	Molecular Control of Metabolism and Metabolic Disease

Capstone

Code	Title	Credits
BIOCHEM 551	Biochemical Methods	4
Total Credits		4

RESIDENCE AND QUALITY OF

WORK

- 2.000 GPA in all BIOCHEM and major courses
- 2.000 GPA on at least 15 upper-level major credits in Residence.
- 15 credits in BIOCHEM, taken on campus
- ¹ Students should consult with their advisor to discuss options if they have credit for PHYSICS 103 (http://guide.wisc.edu/search/?P=PHYSICS %20103) and PHYSICS 104 (http://guide.wisc.edu/search/?P=PHYSICS %20104).
- $^{2}\,$ Major courses numbered 300-699 are considered Upper-Level in the major for purposes of this requirement.

HONORS IN THE MAJOR

Students may declare Honors in the Biochemistry Major in consultation with their Biochemistry undergraduate advisor. To be admitted to Honors in the Major in Biochemistry, students must have declared a major in Biochemistry and have a 3.300 overall university GPA.

HONORS IN THE MAJOR IN BIOCHEMISTRY: **REQUIREMENTS**

To earn honors in the major in biochemistry, students must satisfy the requirements for the major (above) as well as the following requirements. All courses used for honors in the major requirements must receive "B" or better grades to fulfill requirements.

- Earn a 3.300 University GPA
- Earn a 3.300 GPA for all BIOCHEM courses, and all courses accepted in the major
- Complete BIOCHEM 507 and BIOCHEM 508 for Honors
- · Complete a two-semester Senior Honors Thesis for 6 credits total
- · Complete at least 14 credits of any combination of the following coursework:
 - Honors courses that would fulfill the Biology or Biochemistry requirements in the major (see above)
 - · Statistics coursework (does not need to be taken for honors): STAT 301, STAT 371, or STAT/B M I 541
 - Biochemistry elective coursework beyond the major requirements (does not need to be taken for honors): NUTR SCI/BIOCHEM 510, BIOCHEM/NUTR SCI 560, BIOCHEM 570 M M & I/BIOCHEM 575, BIOCHEM 601, MATH/ B M I/BIOCHEM/BMOLCHEM 609, MICROBIO/BIOCHEM/ GENETICS 612, MD GENET/BIOCHEM/GENETICS 620, BOTANY/BIOCHEM 621, BIOCHEM 625, BIOCHEM/ NUTR SCI 645
 - · Honors coursework in MATH, CHEM, or PHYSICS, from the list below:

Math

Code	Title	Credits
MATH 341	Linear Algebra	3
MATH 375	Topics in Multi-Variable Calculus and Linear Algebra	5
MATH 376	Topics in Multi-Variable Calculus and Differential Equations	5
MATH 521	Analysis I	3
MATH 522	Analysis II	3
MATH 541	Modern Algebra	3
MATH 542	Modern Algebra	3

Chemistry

Physics

PHYSICS 201

PHYSICS 202

PHYSICS 207

Code

Code	Title	Credits
CHEM 109	Advanced General Chemistry	5
CHEM 115	Chemical Principles I	5
CHEM 116	Chemical Principles II	5
CHEM 343	Organic Chemistry I	3
CHEM 345	Organic Chemistry II	3
CHEM 344	Introductory Organic Chemistry Laboratory	2
CHEM 329	Fundamentals of Analytical Science	4
CHEM 547	Advanced Organic Chemistry	3
CHEM 561	Physical Chemistry I	3
CHEM 565		
CHEM 563	Physical Chemistry Laboratory I	1
CHEM 562	Physical Chemistry II	3
CHEM 564	Physical Chemistry Laboratory II	1

Title

General Physics

General Physics

General Physics

PHYSICS 208	General Physics	5
PHYSICS 241	Introduction to Modern Physics	3
PHYSICS 247	A Modern Introduction to Physics	5
PHYSICS 248	A Modern Introduction to Physics	5
PHYSICS 249	A Modern Introduction to Physics	4

UNIVERSITY DEGREE REQUIREMENTS

Total Degree To receive a bachelor's degree from UW-Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

Residency

Degree candidates are required to earn a minimum of 30 credits in residence at UW-Madison. "In residence" means on the UW-Madison campus with an undergraduate degree classification. "In residence" credit also includes UW-Madison courses offered in distance or online formats and credits earned in UW-Madison Study Abroad/Study Away programs.

Quality of Work

Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES

LEARNING OUTCOMES

- 1. Identify the fundamental biochemical principles that underlie all biological processes.
- 2. Communicate biochemical knowledge in both written reports and oral presentations to scientists and non-scientists.
- 3. Evaluate how biochemistry relates to other scientific disciplines and to contemporary issues in our society.
- 4. Demonstrate professional and ethical responsibility in scientific research
- 5. Design and conduct quantitative experiments and/or interpret data to address a scientific question.

FOUR-YEAR PLAN

Credits

5

5

5

FOUR-YEAR PLAN

This Four-Year Plan is only one way a student may complete an L&S degree with this major. Many factors can affect student degree planning, including placement scores, credit for transferred courses, credits earned by examination, and individual scholarly interests. In addition, many students have commitments (e.g., athletics, honors, research, student organizations, study abroad, work and volunteer experiences) that necessitate they adjust their plans accordingly. Informed students engage in their own unique Wisconsin Experience by consulting their academic advisors, Guide, DARS, and Course Search & Enroll for assistance making and adjusting their plan.

SAMPLE BIOCHEMISTRY FOUR-YEAR PLAN

Freshman

Fall	Credits Spring	Credits
CHEM 103 or 109	4-5 CHEM 104 (if needed)	5
MATH 221	5 MATH 222	4
Communications Part A	3 Literature Breadth	3
BIOCHEM 100 ¹	1 Social Science Breadth	3
	13	15

Sophomore

Fall	Credits Spring	Credits
ZOOLOGY/BIOLOGY/ BOTANY 151 ²	5 ZOOLOGY/BIOLOGY/ BOTANY 152	5
CHEM 343	3 CHEM 344	2
Literature Breadth	3 CHEM 345	3
Social Science Breadth	3 Ethnic Studies	3
INTER-LS 210	1 Social Science Breadth	3
	15	16

Junior

Fall	Credits Spring	Credits
BIOCHEM 507	3 BIOCHEM 508	3-4
PHYSICS 207 or 201	5 PHYSICS 208 or 202	5
Humanities Breadth	3 CHEM 327	4
Electives	4 Electives	4
	15	16

Senior

Fall	Credits Spring	Credits
CHEM 665 or BIOCHEM 551	3-4 BIOCHEM 551 or CHEM 665	3-4
Upper-Level Biology for major	3 Upper-Level Biology for major	3
Social Science Breadth	3 Humanities Breadth	3
Electives	2 Electives	2
BIOCHEM 691 or 681 (if needed) ³	3 BIOCHEM 692 or 682 (if needed)	3
	15	15

Total Credits 120

- First-year students interested in exploring the major can enroll in BIOCHEM 100.
- Students may wish to consider pursuing the Biology Core Curriculum (Biocore) Honors certificate. For more details about how BIOCORE coursework can help them meet requirements for this major, see the Requirements page (https://guide.wisc.edu/undergraduate/lettersscience/college-wide/biochemistry-bs/#requirementstext). Students should consult with their advisor to identify the biological science sequence that best suits their academic and personal goals.
- Senior Thesis, Directed Study, or work experience in laboratory are recommended, but are not required for the major. However, a Senior Honors Thesis is required to earn Honors in the Major.

ADVISING AND CAREERS

ADVISING AND CAREERS HOW TO SEEK ADVISING

- To schedule an appointment with the advisor, use Starfish (https://advising.wisc.edu/facstaff/starfish/starfish-student-resources/).
- Send an email with brief questions to biochemmicrobioadvisor@wisc.edu.
- Drop-in advising hours for quick (10–15 minute) questions, on a first-come, first-serve basis, are posted on the Biochemistry / Microbiology Undergraduate Advising Hub website (https:// biochemmicrobio.wisc.edu/) each semester.

CAREER EXAMPLES

- Take your skills to a rewarding career in product development, quality control, hospitals, biotechnology, university labs, pharmaceuticals, forensics, and more. Possibilities at top organizations and leading companies include positions such as protein purification scientist, lab manager, medical scribe, clinical research coordinator, and food safety and quality chemist.
- Pursue a professional degree in medical, dental, or veterinary school, using your background in biochemistry to aid your admission and success
- Build on your research experience and continue graduate studies in biochemistry or a related field to shape a career in academia as a professor or in industry.
- Use your science background to inform patent law, science policy and ethics, sales and marketing for science and technology companies, scientific article publishing, and related fields.

L&S CAREER RESOURCES

Every L&S major opens a world of possibilities. SuccessWorks (https://successworks.wisc.edu/) at the College of Letters & Science helps students turn the academic skills learned in their major, certificates, and other coursework into fulfilling lives after graduation, whether that means jobs, public service, graduate school or other career pursuits.

In addition to providing basic support like resume reviews and interview practice, SuccessWorks offers ways to explore interests and build career skills from their very first semester/term at UW all the way through graduation and beyond.

Students can explore careers in one-on-one advising, try out different career paths, complete internships, prepare for the job search and/or graduate school applications, and connect with supportive alumni and even employers in the fields that inspire them.

- SuccessWorks (https://careers.ls.wisc.edu/)
- Set up a career advising appointment (https://successworks.wisc.edu/make-an-appointment/)
- Enroll in a Career Course (https://successworks.wisc.edu/careercourses/) - a great idea for first- and second-year students:
 - INTER-LS 210 L&S Career Development: Taking Initiative (1 credit)
 - INTER-LS 215 Communicating About Careers (3 credits, fulfills Comm B General Education Requirement)
- Learn about internships and internship funding (https://successworks.wisc.edu/finding-a-job-or-internship/)
 - INTER-LS 260 Internship in the Liberal Arts and Sciences

- Activate your Handshake account (https://successworks.wisc.edu/ handshake/) to apply for jobs and internships from 200,000+ employers recruiting UW-Madison students
- Learn about the impact SuccessWorks has on students' lives (https://successworks.wisc.edu/about/mission/)

PEOPLE

PEOPLE PROFESSORS

Amasino, Rick

Attie, Alan

Bednarek, Sebastian

Butcher, Sam

Chaudhari, Snehal

Fox, Brian (Chair)

Friesen, Paul

Henzler-Wildman, Katie

Holden, Hazel

Hoskins, Aaron

Kimble, Judith

Landick, Bob

Ntambi, James

Ralph, John

Rayment, Ivan

Rienstra, Chad

Senes, Alessandro

Sussman, Mike

Wright, Elizabeth

ASSOCIATE PROFESSORS

Raman, Vatsan

ASSISTANT PROFESSORS

Cantor, Jason Chaudhari, Snehal

Coyle, Scott

Grant, Tim Kirchdoerfer, Robert

Lim, Ci Ji

Neugebauer, Monica

Simcox, Judith

Weeks, Amy

ASSOCIATE FACULTY

Pennella, Mario Shu, Erica

ACADEMIC ADVISORS

Biochemistry & Microbiology Undergraduate Advising Hub (https://biochemmicrobio.wisc.edu/advising/)

For more information, see the Department of Biochemistry directory (https://bact.wisc.edu/people.php).

WISCONSIN EXPERIENCE

WISCONSIN EXPERIENCE

The following opportunities can help students connect with other students interested in biochemistry, build relationships with faculty and staff, and contribute to out-of-classroom learning:

- The American Society for Biochemistry and Molecular Biology (ASBMB) UW-Madison Student Chapter (https://win.wisc.edu/ organization/ASBMB/) is a student organization for students interested in biochemistry. ASBMB provides information about careers and job opportunities, how to get involved in research, and volunteer and outreach opportunities.
- Several biochemistry faculty members offer experiential study abroad programs, where students can immerse themselves in research or global health field experiences. Students can review the Biochemistry Major Advising Page (https://studyabroad.wisc.edu/academics/majoradvising-pages-maps/biochemistry/) on the International Academic Programs website for information on these and other programs, as well as requirements that can typically be fulfilled abroad and things to consider when fitting study abroad into an academic plan.
- Students are encouraged to get involved in research, whether in the
 biochemistry department or through other life science or chemistryrelated departments. Research can be performed for either course
 credit or pay, depending on the opportunity. The Biochemistry website
 (https://biochem.wisc.edu/undergraduate_program/researchopportunities-undergraduate-program/) and the advisors can provide
 more information on finding research opportunities. Summer funding
 awards for research are available through the department.