MECHANICAL ENGINEERING (M E)

M E 1 — COOPERATIVE EDUCATION PROGRAM
1 credit.

Work experience which combines classroom theory with practical knowledge of operations to provide students with a background upon which to base a professional career in industry. Enroll Info: None
Requisites: Sophomore standing only
Course Designation: Workplace - Workplace Experience Course
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E 151 — INTRODUCTION TO MECHANICAL ENGINEERING
2 credits.

Introduction to the field of Mechanical Engineering through problem-solving in the context of small group projects. Fabricate, build, and test prototypes. Introduction to computer software of particular relevance to Mechanical Engineers. Enroll Info: None
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2017

M E 160 — ARCHITECTURAL GRAPHICS
3 credits.

The skill of communicating through the graphic media of freehand and instrumental drawing. Architectural presentation, isometric, perspective and shades and shadows. Enroll Info: None
Requisites: None
Repeatable for Credit: No
Last Taught: Fall 2018

M E 170 — CIVIL ENGINEERING GRAPHICS
2 credits.

To develop an awareness of and appreciation for work that is characteristic of civil engineering. Graphical communication including lettering, drawing equipment and techniques; geometric construction, orthogonal projections, pictorial drawing, and technical sketching, isometric, oblique and perspective projections, descriptive geometry, computer-aided design drawing, applications to civil engineering problems. Enroll Info: None
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 201 — INTRODUCTION TO MECHANICAL ENGINEERING
3 credits.

Provides an introduction to the field of Mechanical Engineering in the context of a major, semester-long project that is carried out in small groups as well as several, smaller hands-on projects during the semester. Students will obtain a shop pass, design build and test small prototypes using the shop as well as 3-D printing, take measurements using various instruments, and use a microcontroller to control a system. Students will be introduced to software that is particularly useful to Mechanical Engineers including SolidWorks and EES. Students will learn how to design experiments, obtain data, use data to develop simple models of systems, exercise models for the purposes of design, and present their results professionally. It will provide a context for the math, physics and chemistry classes that are taken during the first year of the Mechanical Engineering curriculum and also provide a preview of future ME courses and should also give you a glimpse into the breadth of opportunities afforded by a mechanical engineering degree. Enroll Info: None
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 231 — GEOMETRIC MODELING FOR DESIGN AND MANUFACTURING
3 credits.

Introduction to basic methods and fundamental concepts in geometric description and modeling of mechanical form, components, and assemblies. Topics include elements of descriptive geometry, engineering drawing standards, introduction to computer modeling, and geometric dimensioning and tolerancing (GDT). Lectures are reinforced by the laboratory experience where students operate modern commercial computer-aided design systems to model and to learn the basics of engineering communication, specification, and annotation. Enroll Info: None
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 240 — DYNAMICS
3 credits.

Rectilinear and curvilinear motion of a particle; force, mass, acceleration; work, potential, and kinetic energy; impulse and momentum; kinematics of rigid bodies; moving coordinate systems with relative motion; general planar rigid body kinematics and kinetics. Applications to linkages, cams and geared systems. Enroll Info: EMA 201, MATH 222
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020
M E 273 — ENGINEERING PROBLEM SOLVING WITH EES
1 credit.

This course will serve the dual purpose of providing students with a high level of proficiency in the Engineering Equation Solver software as well as giving students the opportunity to solve high-level engineering problems using this tool. Students leaving the course will have a very solid understanding of equation solving software including advanced features that would not be covered in any other class on campus. Students will also get another opportunity to apply sophisticated computing tools to engineering applications. Enroll Info: MATH 222
Requisites: MATH 222
Repeatable for Credit: No
Last Taught: Fall 2019

M E 291 — UNGERGRADUATE MECHANICAL ENGINEERING PROJECTS
1-3 credits.

Individual lab projects under staff supervision. Enroll Info: None
Requisites: Consent of instructor
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E 299 — INDEPENDENT STUDY
1-3 credits.

Enroll Info: None
Requisites: Consent of instructor
Course Designation: Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E 306 — MECHANICS OF MATERIALS
3 credits.

Stress and strain, torsion, bending of beams, shearing stresses in beams, compound stresses, principal stresses, deflections of beams, statically indeterminate members, columns. Enroll Info: None
Requisites: E M A 201 and (MATH 222 or 276)
Course Designation: Breadth - Physical Sci. Counts toward the Natural Sci req
Level - Intermediate
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Repeatable for Credit: No
Last Taught: Spring 2020

M E/E M A 307 — MECHANICS OF MATERIALS LAB
1 credit.

Data processing, tension/compression tests, creep stress concentrations, fatigue, fracture, composite materials, combined stress, beam flexure, dynamic loads, buckling. Enroll Info: None
Requisites: (M E 306, E M A 303 or concurrent enrollment) or member of Engineering Guest Students
Repeatable for Credit: No
Last Taught: Spring 2020

M E 313 — MANUFACTURING PROCESSES
3 credits.

A quantitative and qualitative study of manufacturing processes including machining, forming, welding, and casting for metals; and extrusion, injection molding, thermoforming, and blow molding for plastics. Emphasis on process selection for optimum design. Laboratory experiments and demonstrations. Quality, strength, and economic evaluations. Enroll Info: MSE 350 or cons inst
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 314 — MANUFACTURING FUNDAMENTALS
3 credits.

An introduction to techniques for modeling in materials processing and improving decision making in increasing the productivity of design and manufacturing processes. Quality improvement and engineering simulation tools are presented as well as the methods of engineering economy and the role of manufacturing automation and systems, through lectures and laboratories. Enroll Info: Stat 224 ME 313 or cons inst
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 331 — COMPUTER-AIDED ENGINEERING
3 credits.

Introduction to the fundamentals of Computer Aided Engineering. Topics include mathematical and programmable methods for modeling and design of mechanical shapes and assemblies; shape processing for manufacturing, including NC machining and 3D printing; and computer-aided analysis of structural, thermal and other physical properties. Enroll Info: None
Requisites: M E 231, MATH 320, COMP SCI 301, M E 240, M E 306 and M E 313
Repeatable for Credit: No
Last Taught: Spring 2020

M E 340 — DYNAMIC SYSTEMS
3 credits.

Mathematical modeling and analysis of dynamic systems with mechanical, thermal, and fluid elements. Topics: time domain solutions, analog computer simulation, linearization techniques, block diagram representation, numerical methods and frequency domain solutions. Students are assumed to have basic competence in particle and planar rigid body dynamics, matrix and vector algebra, and linear differential equations. Enroll Info: None
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020
M E 342 — DESIGN OF MACHINE ELEMENTS
3 credits.

Analysis and design of machine elements and machines: loads, stresses, deflections, material selection, fatigue failure, finite elements; mechanical power transmission components including gearing, bearings, shafting, and frictional devices. Enroll Info: ME 306, 307 or EMA 307, and ME 331, 340

Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 346 — INTRODUCTION TO FEEDBACK CONTROL FOR MECHANICAL ENGINEERS
3 credits.

Overview of linear feedback control analysis and design techniques for mechanical systems. Modeling of linear dynamic mechanical systems (review), derivation of their defining differential equations, and analysis of their response using both transient and frequency response techniques; Analysis and design of feedback control of mechanical systems using classical control transform techniques such as root locus and frequency response; Analysis of system robustness through evaluation of phase and gain margins and the Nyquist stability criterion. Design domains, including mechanical, thermal, and fluid feedback control systems. Effects of non-ideal system characteristics commonly encountered in mechanical systems, such as compliance, delay, and actuator and sensor saturation. Enroll Info: None

Requisites: None
Repeatable for Credit: No
Last Taught: Fall 2019

M E 349 — ENGINEERING DESIGN PROJECTS
3 credits.

Applied engineering design projects. Emphasis on design of practical mechanical engineering systems, devices and/or components. Two 2-hr labs and one lecture per week. Lecture focuses on the design process, creativity, patents, and other applications to practical problems. Enroll Info: ME 314, 342 364

Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 351 — INTERDISCIPLINARY EXPERIENTIAL DESIGN PROJECTS I
3 credits.

First of a two-course sequence in which students design and fabricate systems and devices, typically having an interdisciplinary aspect. In the first course, emphasis will be on project planning, team dynamics, problem identification, and conceptual design and evaluation. Enroll Info: Sr st in ME or cons inst

Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 352 — INTERDISCIPLINARY EXPERIENTIAL DESIGN PROJECTS II
3 credits.

Second of a two-course sequence in which students design and fabricate systems and devices, typically having an interdisciplinary aspect. In the second course, emphasis will be on detailed design, fabrication, testing, and modification of concepts developed in the previous course. Enroll Info: ME 351 Sr st in ME or cons inst

Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 356 — THERMODYNAMICS
3 credits.

First and second laws of thermodynamics; thermodynamic properties of gases, vapors, and gas-vapor mixtures; energy-systems analysis including power cycles, refrigeration cycles and air-conditioning processes. Introduction to thermodynamics of reacting mixtures. Enroll Info: MATH 234 Comp Sci 302, ME 240 or EMA 202, or equivalent

Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 363 — FLUID DYNAMICS
3 credits.

Laws of mechanics and thermodynamics applied to fluids at rest and in motion; potential flow; dimensional analysis; viscous flow; pipe flow; boundary-layer theory; compressible flow. Enroll Info: MATH 320, ME 361 Comp Sci 302 or equiv

Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 364 — ELEMENTARY HEAT TRANSFER
3 credits.

Fundamental concepts of conduction, convection, radiation. Heat-exchanger principles. Enroll Info: ME 363 or equiv

Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 368 — ENGINEERING MEASUREMENTS AND INSTRUMENTATION
4 credits.

Theory of modern instrumentation, the design and execution of experiments and the analysis of experimental data. Laboratory provides direct experience with concepts in the context of experimental design for hypothesis testing, for product evaluation and for control system design. Enroll Info: ME 340, 361 ECE 376

Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020
M E 370 — ENERGY SYSTEMS LABORATORY
3 credits.

Experimental evaluation and analysis of performance of various energy conversion systems such as turbines, compressors, refrigerators, fans, and internal combustion engines. Enroll Info: ME 363, 368, EPD 397
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 379 — MECHANICAL DISSECTION
1 credit.

Laboratory examination of the design of pumps, turbines, engines, heat-exchangers, household appliances, and other mechanical equipment. Operational design materials, manufacturing, failure and marketing considerations. Enroll Info: Sr st in mech engr or cons inst
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2013

M E/B M E 414 — ORTHOPAEDIC BIOMECHANICS - DESIGN OF ORTHOPAEDIC IMPLANTS
3 credits.

Apply the design process for orthopaedic implants (total joint replacements). Topics include: library skills; joint anatomy; tissue properties; surgical approach; joint loading; implants materials; preclinical testing and analysis. Students are assumed to have knowledge of mechanics of materials. Enroll Info: None
Requisites: Senior standing and (M E 306 or E M A 303) or graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No

M E/B M E 415 — BIOMECHANICS OF HUMAN MOVEMENT
3 credits.

An overview of experimental and modeling techniques used to study human movement. Specific topics will include locomotion, motion capture systems, force plates, muscle mechanics, musculoskeletal modeling, three dimensional kinematics, inverse dynamics, forward dynamic simulation and imaging based biomechanics. Homework and laboratory activities will be conducted that emphasize applications of movement biomechanics in orthopedics and rehabilitation. The course will culminate in a class project related to each student’s research interests. Enroll Info: Senior or graduate standing, ME 240, ME 340, BME 315
Requisites: None
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2017

M E 370 — ENERGY SYSTEMS LABORATORY
3 credits.

Description of the physical, thermal, mechanical, and rheological properties of polymeric materials relevant to their processing behavior. Review of the basic transport phenomena equations: mass, momentum, and energy. Analysis of various processing operations for the manufacture of polymeric articles, with particular emphasis on: extrusion, injection molding, blow molding, thermoforming, compression molding and additive manufacturing. Discussion of plastics recycling and environmental issues. Enroll Info: None
Requisites: Sophomore standing
Repeatable for Credit: No
Last Taught: Spring 2020

M E 417 — TRANSPORT PHENOMENA IN POLYMER PROCESSING
3 credits.

Implications for plastics part design of polymer classification, structure, melt rheology, mixing, polymer blends, anisotropy, solidification, mechanical behavior, failure. Plastics design for electrical, optical, acoustic and barrier properties. Enroll Info: Sr st or cons inst
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 418 — ENGINEERING DESIGN WITH POLYMERS
3 credits.

All major aspects of injection molding with emphases on design, processing, process physics, computer-aided engineering (CAE), troubleshooting, and advanced molding processes. Field trip, video presentation, case studies, term project with oral presentation, and hands-on sessions using commercial CAE simulation software. Enroll Info: Sr or Grad st
Requisites: None
Repeatable for Credit: No
Last Taught: Fall 2019

M E 419 — FUNDAMENTALS OF INJECTION MOLDING
3 credits.

A brief description of the physical, thermal, rheological and mechanical properties of composite materials. Apply fundamental transport phenomena concepts to solve problems dealing with flow through porous media, fiber orientation, curing reactions, shrinkage and warpage and mechanics of composites. Introduction of various processing operations for the manufacture of composites products, with particular emphasis on resin transfer molding, vacuum assisted resin infusion, injection and compression molding, filament winding, braiding and pultrusion. The course includes laboratory experiments, CAE applied to composites product design, and a final group project producing a composites product. Enroll Info: Senior status or consent of instructor
Requisites: None
Repeatable for Credit: No
Last Taught: Summer 2017

M E 420 — INTRODUCTION TO POLYMER COMPOSITES PROCESSING
3 credits.

A brief description of the physical, thermal, rheological and mechanical properties of composite materials. Apply fundamental transport phenomena concepts to solve problems dealing with flow through porous media, fiber orientation, curing reactions, shrinkage and warpage and mechanics of composites. Introduction of various processing operations for the manufacture of composites products, with particular emphasis on resin transfer molding, vacuum assisted resin infusion, injection and compression molding, filament winding, braiding and pultrusion. The course includes laboratory experiments, CAE applied to composites product design, and a final group project producing a composites product. Enroll Info: Senior status or consent of instructor
Requisites: None
Repeatable for Credit: No
Last Taught: Summer 2017
M E/STAT 424 — STATISTICAL EXPERIMENTAL DESIGN
3 credits.

This course provides a systematic introduction to statistical design and analysis of experiments. Topics include: principles of randomization, blocking and replication, randomized blocking designs, Latin square designs, full factorial and fractional factorial designs and response surface methodology. Substantial focus will be devoted to engineering applications. Enroll Info: None

Requisites: STAT 240, 301, 302, 312, 324, 371, or MATH/STAT 310

Course Designation: Breadth - Natural Science

Level - Advanced

L&S Credit - Counts as Liberal Arts and Science credit in L&S

Repeatable for Credit: No

Last Taught: Spring 2020

M E/CBE/CHEM/E M A 425 — UNDERGRADUATE RHEOLOGY SEMINAR
0-1 credits.

Rheology seminar encouraged for all interested in professions related to polymers, suspensions or rheology. Enroll Info: None

Requisites: Junior or senior standing only, or member of Engineering Guest Students

Course Designation: Level - Advanced

L&S Credit - Counts as Liberal Arts and Science credit in L&S

Repeatable for Credit: Yes, unlimited number of completions

Last Taught: Fall 2011

M E 429 — METAL CUTTING
3 credits.

Theory and applications of metal cutting; basic principles; significant features of current research. Chip formation mechanics, three-dimensional machining operations, tool life and machinability, economics of metal removal, and precision engineering. Enroll Info: Sr st in engr or cons inst

Requisites: None

Repeatable for Credit: No

Last Taught: Fall 2019

M E 437 — ADVANCED MATERIALS SELECTION
3 credits.

A structured approach is developed to address the complex problem of materials selection in design where multiple constraints and conflicting objectives need to be considered. Topics include: introductory fracture mechanics; corrosion and corrosion mitigation; effects of manufacturing processes and process selection; property development in metals, ceramics, polymers and composites; and material analysis techniques. Enroll Info: None

Requisites: M E 313

Repeatable for Credit: No

Last Taught: Spring 2020

M E/E C E 439 — INTRODUCTION TO ROBOTICS
3 credits.

Hands-on introduction to key concepts and tools underpinning robotic systems in use and development today. Intended to give students the tools to understand robotic systems, to explore robotics for their own purposes, and to pursue advanced study in the field. Students are expected to have familiarity with a high level programming language such as Python (recommended), MATLAB, Java or Julia. Enroll Info: None

Requisites: Senior standing or member of Engineering Guest Students

Repeatable for Credit: No

Last Taught: Spring 2020

M E 440 — INTERMEDIATE VIBRATIONS
3 credits.

Harmonic motion; natural frequencies and vibration of damped and undamped single and multi-degree of freedom systems; modal analysis; influence coefficients; lumped-mass modeling; dynamic load factors; Rayleigh's method; flow-induced vibrations; shaft whirl; balancing; vibration absorbers and tuned mass dampers; finite element modeling. Enroll Info: ME 306, ME 340

Requisites: None

Repeatable for Credit: No

Last Taught: Fall 2019

M E/BSE/FOOD SCI 441 — RHEOLOGY OF FOODS AND BIOMATERIALS
3 credits.

Fundamentals of rheology and rheological evaluations of food and biomaterials; structure-function relationships. Enroll Info: PHYSICS 201 or CBE/B M E 320 or ME 363 or cons inst

Requisites: None

Repeatable for Credit: No

Last Taught: Spring 2016

M E 444 — DESIGN PROBLEMS IN ELASTICITY
3 credits.

Analysis of elastic systems by strain-energy techniques. Determination of stresses and deflections in statically indeterminate structures encountered in design. Resilience in springs. Enroll Info: ME 342 or cons inst

Requisites: None

Repeatable for Credit: No

Last Taught: Fall 2018
ME 445 — MECHATRONICS IN CONTROL & PRODUCT REALIZATION
3 credits.

The course will cover fundamentals of electromechanical control systems with a focus on subsystem design impacts at the system level. Students will learn how to integrate microcontrollers into products for control and/or instrumentation and learn how to create intelligent interfaces. * Motor sensor interfaces * C programming * Control computer system architecture * Software and hardware principles for computer control The following experience would be extremely advantageous to have coming in but in not assumed: Experience designing/fabricating/debugging digital circuits and active/passive analog circuits. Experience in any function based programming language (C/C++). Experience with Electrical Mechanical CAD tools (Altium Designer etc./ Solidworks etc.). Enroll Info: ECE 376 or physics based circuits course

Requisites: None

Repeatable for Credit: No

Last Taught: Fall 2019

ME 446 — AUTOMATIC CONTROLS
3 credits.

Sequencing control. Theory of linear feedback control systems with illustrative examples taken from applications encountered by mechanical engineers; differential equations for defining dynamic system response, Laplace transforms, and transient and frequency response concepts. Enroll Info: ME 340 or cons inst

Requisites: None

Repeatable for Credit: No

Last Taught: Fall 2019

ME 447 — COMPUTER CONTROL OF MACHINES AND PROCESSES
3 credits.

Discrete control theory reduced to engineering practice through a comprehensive study of discrete system modeling, system identification and digital controller design. Selected industrial processes and machines utilized as subjects on which computer control is to be implemented. Focus: computer control economics and planning as well as the control theory and programming. Enroll Info: ME 340 or equiv or cons inst

Requisites: None

Repeatable for Credit: No

Last Taught: Fall 2019

ME 448 — MECHANICAL SYSTEMS ANALYSIS
3 credits.

Integrated treatment of mathematical modeling and analysis of mechanical systems. Modeling of linear and nonlinear systems and their performance under transient, periodic and random loads. Enroll Info: Sr or Grad st in engr or phys sci

Requisites: None

Repeatable for Credit: No

Last Taught: Fall 2019

ME 449 — REDESIGN AND PROTOTYPE FABRICATION
3 credits.

The focal point of all lectures and labs is a semester long project. Lectures cover principals of design, manufacturing and prototype evaluation. Students will perform a re-design of a thermo-mechanical device using knowledge/skills acquired both through this course and previous course offerings in thermal sciences, mechanics and dynamics, manufacturing, and design. The lab component provides students with instruction and hands-on experience using the manufacturing tools/processes available in the College of Engineering. In addition, during the lab the students will apply the concepts of the lectures to the fabrication of the semester project. Each student constructs his or her own device during the course of the semester. This course provides a complete engineering experience by combining design, dimensioning and tolerancing, manufacturing and quantitative analysis in a single semester project. Enroll Info: ME 306; ME 313; ME 331; ME 361; or consent of instructor

Requisites: None

Repeatable for Credit: No

Last Taught: Spring 2020

ME 450 — DESIGN AND DYNAMICS OF VEHICLES
3 credits.

Dynamic modelling of vehicles, tire mechanics, suspension kinematics, vehicle stability, vehicle structural design criteria, vehicle vibrations and ride criteria, design considerations for vehicles. Enroll Info: ME 340 or equiv, COMP SCI 310 or equiv, or cons inst

Requisites: None

Repeatable for Credit: No

Last Taught: Spring 2014

ME 451 — KINEMATICS AND DYNAMICS OF MACHINE SYSTEMS
3 credits.

Graphical, analytical, and computer methods for the kinematic and dynamic analysis of mechanical linkages, mechanisms, and geared and cam systems. Enroll Info: ME 240 or equivalent or consent of instructor

Requisites: None

Repeatable for Credit: No

Last Taught: Fall 2014

ME 459 — COMPUTING CONCEPTS FOR APPLICATIONS IN ENGINEERING
3 credits.

An overview of computing concepts that support modeling and simulation in engineering applications. Learn the basics of computer architecture, software development and the interplay between software and hardware components. Enroll Info: None

Requisites: COMP SCI 300, 301, or 302 or graduate/professional standing

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement

Repeatable for Credit: No

Last Taught: Fall 2019
M E 460 — APPLIED THERMAL / STRUCTURAL FINITE ELEMENT ANALYSIS
3 credits.

The course is designed for undergraduate students with no finite element (FE) analysis experience or knowledge. By the end of the semester the student will be able to simulate 1D, 2D and 3D structural and thermal systems, including both the static and transient response, using a common, commercially available FE software package. Analyses will be performed using both GUI and APDL. The emphasis of the course is on becoming proficient with the software and capable of operating an FE package at a high level, including benchmarking and verifying the FE model using simple analytical checks. An additional emphasis of the course is on understanding the impact of the temperature distribution in an object on the stress field through thermal expansion. Enroll Info: None
Requisites: M E 306, 340, and 364
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E 461 — THERMAL SYSTEMS MODELING
3 credits.

Analysis and design of engineering systems involving applications of thermodynamics, economics, heat transfer, and fluid flow. Enroll Info: ME 364 or equiv or cons inst
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E/M S & E 462 — WELDING METALLURGY
3 credits.

Metallurgical principles applied to welding; mechanisms of strengthening, phase equilibria, and microstructure of the weld zone. Modern processes including laser and electron beam welding. Enroll Info: MSE 370 or ME 313 and MSE 350 or cons inst
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 466 — AIR POLLUTION EFFECTS, MEASUREMENTS AND CONTROL
3 credits.

Overview of human health and environmental effects, and legislation regarding air pollution. Atmospheric transport and transformation of air pollutants. Emissions of air pollutants from power plants, transportation and industrial sources. Control technology for particulate and gaseous emissions. Monitoring and measurement of air pollutants. Application to boilers, engines, industrial processes and solid waste-to-energy technology. Enroll Info: Senior standing in engr or consent of instructor
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2020

M E 469 — INTERNAL COMBUSTION ENGINES
3 credits.

Fundamental principles of engine operation and application including cycle analysis, gas analysis, effect of operating conditions and engine design on air pollution. Enroll Info: ME 361 or cons inst
Requisites: None
Repeatable for Credit: No
Last Taught: Fall 2019

M E 471 — GAS TURBINE AND JET PROPULSION
3 credits.

Principles of thermodynamics and fluid dynamics utilized in the analysis and design of gas-turbine cycles, components and systems for stationary, automotive and aircraft applications. Enroll Info: None
Requisites: M E 364, graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No

M E/BSE 475 — ENGINEERING PRINCIPLES OF AGRICULTURAL MACHINERY
3 credits.

Engineering design principles of machines for the production, processing and handling of crops for food, fuel, bio-mass and fiber. Environmental and biological factors that influence machine design and operation. Economic and capacity analysis of machines and systems. Enroll Info: None
Requisites: Declared in Biological Systems Engineering or Mechanical Engineering and E M A 202 or M E 240 or graduate standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

M E/BSE 476 — ENGINEERING PRINCIPLES OF OFF-ROAD VEHICLES
3 credits.

Engineering design principles of heavy-duty vehicles intended for off-road use: fuels, engine cycles, engine principles and construction, clutches, mechanical and hydrostatic transmissions, final drives, traction systems, traction modeling, dynamic behavior, suspension systems and braking. Enroll Info: None
Requisites: Declared in Biological Systems Engineering or Mechanical Engineering and M E 361, E M A 202 or M E 240; or graduate standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E 489 — HONORS IN RESEARCH
1-3 credits.

Undergraduate honors research projects supervised by faculty members. Enroll Info: Admission to mech engr honors in research prgm
Requisites: Consent of instructor
Course Designation: Honors - Honors Only Courses (H)
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020
M E 491 — MECHANICAL ENGINEERING PROJECTS I
1-3 credits.

Individual lab projects under staff supervision. Enroll Info: None

Requisites: Consent of instructor
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E 492 — MECHANICAL ENGINEERING PROJECTS II
1-3 credits.

Continuation of 491. Enroll Info: None

Requisites: Consent of instructor
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E/B M E 505 — BIOFLUIDICS
3 credits.

Introduction to the physics of biological fluid flow with an emphasis on the cardiovascular system including blood rheology, pulsatile flow, wave travel, and topics relevant to blood flow measurement and biomedical device design. Enroll Info: None

Requisites: (B M E 315, M E 240 or E M A 202) or graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E/CIV ENGR/E M A 508 — COMPOSITE MATERIALS
3 credits.

Physical properties and mechanical behavior of polymer, metal, ceramic, cementitious, cellulosic and biological composite systems; micro- and macro-mechanics; lamination and strength analyses; static and transient loading; fabrication; recycling; design; analytical-experimental correlation; applications. Enroll Info: None

Requisites: (E M A 303 or M E 306), graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E/I SY E 510 — FACILITIES PLANNING
3 credits.

Introduction to plant location theory and analysis of models of plant location; models for determining plant size and time phasing; line balancing models; techniques for investigating conveyor and other material handling problems; and models of plant layout. Enroll Info: None

Requisites: I SY E 315, (I SY E 323 or E C E/COMP SCI/I SY E 524) and I SY E/PSYCH 349, or graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2012

M E/I SY E 512 — INSPECTION, QUALITY CONTROL AND RELIABILITY
3 credits.

Inspection data for quality control; sampling plans for acceptance inspection; charts for process control. Introduction to reliability models and acceptance testing. Enroll Info: None

Requisites: (STAT/MATH 309, STAT 311, 224, 324, or STAT/MATH 431), graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E/I SY E 513 — ANALYSIS OF CAPITAL INVESTMENTS
3 credits.

A second course in quantitative methods for analyzing capital investments in technological environments, both public and private. Replacement models; comparison of alternative investment models; risk analysis; case studies. Enroll Info: None

Requisites: I SY E 313, (I SY E 323 or E C E/COMP SCI/I SY E 524) and (STAT/MATH 309, STAT 311, STAT 224, STAT 324 or STAT/MATH 431), graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2012

M E 514 — ADDITIVE MANUFACTURING
3 credits.

Rapid prototyping (RP) has emerged as a popular manufacturing technology to accelerate product creation. This novel manufacturing technology enables the building of parts that have traditionally been impossible to fabricate because of their complex shapes and the variety in materials. Enroll Info: ME 313 or consent of instructor

Requisites: None
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2019

M E/N E 520 — TWO-PHASE FLOW AND HEAT TRANSFER
3 credits.

Two-phase flow and heat transfer in engineering systems. Pool boiling and flow boiling. Phenomenological modeling. Enroll Info: None

Requisites: M E 361 and (M E 364 or B M E/CBE 320), or graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019
M E/CBE 525 — MACROMOLECULAR HYDRODYNAMICS
3 credits.

Observed phenomena in polymeric flow systems. Techniques of viscometry and viscoelastic measurements for polymeric fluids. Rheological models. Analytical solutions to flow problems: non-Newtonian viscosity, linear viscoelasticity, normal stresses, recoil, stress relaxation, etc. Dimensional analysis. Unit operations of the polymer industry: extrusion, blow molding, injection molding, mixing. Enroll Info: CBE/B M E 320 or ME 363 or equivalent or consent of instructor
Requisites: None
Repeatable for Credit: No
Last Taught: Spring 2015

M E 531 — DIGITAL DESIGN AND MANUFACTURING
3 credits.

Broad overview of concepts, methods and tools for manipulating digital geometric models for engineering design and manufacturing. Topics include freeform curves, surfaces, and solid modeling. Topics also include slicing, support generation and path planning for additive and subtractive manufacturing. Provides both cutting-edge knowledge and hands-on project experiences in digital design and manufacturing. It will involve the use of CAD software for creative shape design. It will also involve 3D printers and 3D scanners in the ME Instructional Lab and Maker Space. Enroll Info: None
Requisites: Senior standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2019

M E COMP SCI/E C E 532 — MATRIX METHODS IN MACHINE LEARNING
3 credits.

An introduction to machine learning that focuses on matrix methods and features real-world applications ranging from classification and clustering to denoising and data analysis. Mathematical topics covered include: linear equations, regression, regularization, the singular value decomposition, and iterative algorithms. Machine learning topics include: the lasso, support vector machines, kernel methods, clustering, dictionary learning, neural networks, and deep learning. In addition to the formal course requisites, students are expected to have had exposure to numerical computing (e.g. Matlab, Python, Julia, R). Appropriate for graduate students or advanced undergraduates. Enroll Info: None
Requisites: MATH 222 and (E C E 203, COMP SCI 200, 300 or 302) or graduate/professional standing
Course Designation: Breadth - Physical Sci. Counts toward the Natural Sci req
Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E 535 — COMPUTER-AIDED GEOMETRIC DESIGN
3 credits.

This course is designed to acquaint the student with computer-aided design technology used for geometric design of mechanical product. Currently used methods of creating three-dimensional computer-aided design (CAD) models will be discussed. The paradigms of three-dimensional wire-frame modeling, surface modeling and solids modeling as applied in product design will be taught. The course will be project oriented and will emphasize building and querying CAD models. Enroll Info: ME 232 or equiv, progrmg backgrnd Sr or Grad st, or cons inst
Requisites: None
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

M E COMP SCI/E C E 539 — INTRODUCTION TO ARTIFICIAL NEURAL NETWORK AND FUZZY SYSTEMS
3 credits.

Theory and applications of artificial neural networks and fuzzy logic: multi-layer perceptron, self-organization map, radial basis network, Hopfield network, recurrent network, fuzzy set theory, fuzzy logic control, adaptive fuzzy neural network, genetic algorithm, and evolution computing. Applications to control, pattern recognition, nonlinear system modeling, speech and image processing. Enroll Info: None
Requisites: COMP SCI 200, 301, 302, or 310 or graduate/professional standing
Course Designation: Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Repeatable for Credit: No
Last Taught: Fall 2018

M E/E M A 540 — EXPERIMENTAL VIBRATION AND DYNAMIC SYSTEM ANALYSIS
3 credits.

Application of digital data acquisition to the investigation of mechanical components, structures and systems using time histories, transforms and response functions to characterize free, forced and transient inputs. Introduction to sensors, instrumentation and methods appropriate for dynamic system response. Enroll Info: None
Requisites: (M E 440, E M A 545, or concurrent enrollment) or graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

M E 545 — FLUID POWER
3 credits.

Generation, transmission, and utilization of power in systems in which the working fluid is oil or air; analysis and evaluation of pumps, motors, valves, and other fluid components: dynamic analysis and control of fluid power systems. Enroll Info: ME 340 or equiv or cons inst
Requisites: None
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2012
M E 548 — INTRODUCTION TO DESIGN OPTIMIZATION
3 credits.

Introduces basic concepts and techniques used in the optimization of engineering design components and systems. Pose and solve typical optimization problems such as truss and finite-element-based optimization. Enroll Info: Background in programming (preferably MATLAB) and basic knowledge of finite element analysis (FEA) are desirable but not required.

Requisites: M E 306 or E M A 303 or graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E 549 — PRODUCT DESIGN
3 credits.

A project oriented, interdisciplinary course with an emphasis on designing competitive, quality products. The product development process is covered from problem identification through detail design and evaluation. Included among the topics covered are: idea generation and evaluation, visualization, and quality. Enroll Info: Sr or Grad st in engr or Grad st in other college or cons inst

Requisites: None
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

M E/COMP SCI/I SY E 558 — INTRODUCTION TO COMPUTATIONAL GEOMETRY
3 credits.

Introduction to fundamental geometric computations and algorithms, and their use for solving engineering and scientific problems. Computer representations of simple geometric objects and paradigms for algorithm design. Applications from areas of engineering analysis, design and manufacturing, biology, statistics, and other sciences. Enroll Info: None

Requisites: (COMP SCI 367 or 400) and MATH 234 or graduate/professional standing
Course Designation: Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2018

M E 561 — INTERMEDIATE THERMODYNAMICS
3 credits.

Fundamentals; phase and chemical equilibria; availability; thermodynamic relationships. Enroll Info: ME 364 or equivalent or consent of instructor

Requisites: None
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

M E 563 — INTERMEDIATE FLUID DYNAMICS
3 credits.

Incompressible and compressible, laminar and turbulent flow of fluids. Classical and finite-difference analysis using differential and integral formulation of the continuity, momentum and energy equations. Application to ducts, plates, spheres, blades, pumps, turbines, lubrication, shockwaves, nozzles, diffusers and other mechanical engineering equipment. Enroll Info: ME 363 or cons inst

Requisites: None
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E 564 — HEAT TRANSFER
3 credits.

Applications of conduction, convection, and thermal-radiation principles to combined-mode problems; analytical and numerical techniques; heat-exchanger design; thermal stresses. Enroll Info: ME 364 or equiv or cons inst

Requisites: None
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E/N E 565 — POWER PLANT TECHNOLOGY
3 credits.

Design and performance of power plants for the generation of electric power; fossil and nuclear fuels, cycle analysis, component design and performance, plant operation, control, economics and environmental impact. Advanced concepts. Enroll Info: None

Requisites: M E 361, or graduate/professional standing, or member of Engineering Guest Students
Course Designation: Breadth - Physical Sci. Counts toward the Natural Sci req
Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Repeatable for Credit: No
Last Taught: Fall 2019

M E/E P 566 — CRYOGENICS
3 credits.

Applications of cryogenics, material properties at low temperatures, refrigeration and liquefaction systems, measurement techniques, insulation, storage and transfer of cryogenics, safety and handling. Enroll Info: None

Requisites: (M E 361 or PHYSICS 415) and (B M E/CBE 320 or M E 364), or graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2019
M E/CBE 567 — SOLAR ENERGY TECHNOLOGY
3 credits.

Radiant energy transfer and its application to solar exchangers; energy balances for solar exchangers, review of theory, economics, and practice of solar energy applications. Enroll Info: ME 364 or CBE 326 or consent of instructor

Requisites: None
Repeatable for Credit: No
Last Taught: Fall 2019

M E 569 — APPLIED COMBUSTION
3 credits.

Introduction to and analysis of combustion processes and combustion technology for gaseous, liquid, and solid fuels. Application to combustion engines, furnaces, fixed-bed, fluidized-bed, and suspension burning boilers. Enroll Info: ME 364 or equiv

Requisites: None

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

M E/E M A 570 — EXPERIMENTAL MECHANICS
3 credits.

Experimental methods for design and analysis of mechanical components, structures and materials. Electrically and optically recorded stress, strain and deformation data; computer acquisition/reduction/presentation techniques; applications to static and transient events, sensors, transducer design, NDT, fracture and residual stresses. Enroll Info: None

Requisites: Senior standing and (M E 306, E M A 303 or 304) or graduate/professional standing, or member of Engineering Guest Students

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2019

M E 572 — INTERMEDIATE GAS DYNAMICS
3 credits.

Thermodynamics and fluid dynamics of compressible gas flows with friction and heat transfer, and application to nozzles, shock tubes and propulsion devices. Wave phenomena and engine port tuning. Physics of high temperature gases and equilibrium, non-equilibrium and frozen flows. Enroll Info: ME 363 or equiv or cons inst

Requisites: None

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2019

M E 573 — COMPUTATIONAL FLUID DYNAMICS
3 credits.

Course provides an in-depth introduction to the methods and analysis techniques used in computational solutions of fluid mechanics and heat transfer problems. Model problems are used to study the interaction of physical processes and numerical techniques. Contemporary methods for boundary layers, incompressible viscous flows, and inviscid compressible flows are studied. Finite differences and finite volume techniques are emphasized. Enroll Info: ME 363, COMP SCI 310 or 412 or cons inst

Requisites: None

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

M E/E C E 577 — AUTOMATIC CONTROLS LABORATORY
4 credits.

Control theory is reduced to engineering practice through the analysis and design of actual systems in the laboratory. Experiments are conducted with modern servo systems using both analog and digital control. Systems identification and modern controls design are applied to motion and torque control. Enroll Info: None

Requisites: M E 346 or E C E 332, or graduate/professional standing or member of Engineering Guest Students

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2018

M E 601 — SPECIAL TOPICS IN MECHANICAL ENGINEERING
1-3 credits.

Advanced topics of special interest in various areas of Mechanical Engineering, such as vibrations, balancing, lubrication and wear, special manufacturing processes, automation, energy systems, etc. Enroll Info: None

Requisites: Senior standing or member of Engineering Guest Students

Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E/B M E 603 — TOPICS IN BIO-MEDICAL ENGINEERING
1-3 credits.

Various aspects of living systems of interest to the mechanical engineer, such as the mechanics of hearing and vision, cardiac and central nervous systems, artificial organs, blood flow behavior, and energy-transfer processes. Enroll Info: None

Requisites: None
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2019
M E/B ME 615 — TISSUE MECHANICS
3 credits.
Focus on solid mechanics of prominent musculoskeletal and cardiovascular tissues. Their normal and pathological behaviors (stiffness, strength, relaxation, creep, adaptive remodeling, etc.) in response to physiologic loading will be examined and quantified. Enroll Info: None
Requisites: M E 306 or E M A 303 or graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E/I SY E 641 — DESIGN AND ANALYSIS OF MANUFACTURING SYSTEMS
3 credits.
Covers a broad range of techniques and tools relevant to the design, analysis, development, implementation, operation and control of modern manufacturing systems. Case studies assignments using industry data will be used to elaborate the practical applications of the theoretical concepts. Enroll Info: None
Requisites: I SY E 315, graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E/I SY E 643 — PERFORMANCE ANALYSIS OF MANUFACTURING SYSTEMS
3 credits.
Examines the state of the art in the use of stochastic network theory to develop performance models of modern manufacturing systems. Enroll Info: None
Requisites: (I SY E 624 or STAT/I SY E/MATH/OTM 632) and (COMP SCI 200, 220, 300, 301, 302, or 400), graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2018

M E 669 — ENGINE EXPERIMENTS
3 credits.
Hands-on experience with engine hardware testing, especially as it relates to required information for setting up and validating computational models. Enroll Info: None
Requisites: M E 364, graduate/professional standing, or member of Engineering Guest Students
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No

M E 673 — INTERNAL COMBUSTION ENGINE SIMULATIONS
3 credits.
Hands-on experience with engine CFD (computational fluid dynamics) simulations and use of engine data to validate computational predictions. Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No

M E 699 — ADVANCED INDEPENDENT STUDY
1-3 credits.
Enroll Info: None
Requisites: Consent of instructor
Course Designation: Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E 702 — GRADUATE COOPERATIVE EDUCATION PROGRAM
1-2 credits.
Work experience that combines classroom theory with practical knowledge of operations to provide students with a background on which to develop and enhance a professional career. The work experience is tailored for MS students from within the U.S. as well as eligible international students. Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Fall 2019

M E/E M A 703 — PLASTICITY THEORY AND PHYSICS
3 credits.
Physical foundations of plasticity as a basis for choices made in the formulation of theories representing plastic deformation and their limitation. Motion of dislocations and formation and growth of deformation twins. Experimental results in the context of plasticity models. Traditional and research topics of plasticity and theories for rate-independent, rate-dependent, single and polycrystal descriptions. Numerical solution of equations and computational plasticity. Enroll Info: Knowledge of mechanics of materials [such as E M A 303 or M E 306] and continuum mechanics [such as E M A 622] required.
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019
M E/E M A 706 — PLATES, SHELLS AND PRESSURE VESSELS
3 credits.

Stress and deflection analysis of structural plates and membranes under mechanical and thermal loads; variational and numerical methods; instability and vibrations; membrane shell theory; cylindrical shells; pressure vessel and piping design applications; ASME Pressure Vessel Code. Enroll Info: Knowledge of mechanics of materials [such as M E 444 or E M A 506] strongly encouraged.

Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2017

M E/E M A 708 — ADVANCED COMPOSITE MATERIALS
3 credits.

Contemporary topics such as new materials; smart materials/structures/systems; fatigue; fracture; experimental techniques; nondestructive evaluation; transient, micro, three-dimensional, nonlinear, inelastic and environmental effects; manufacturing methods: repair and applications. Enroll Info: Knowledge of composite materials [such as E M A/CIV ENGR/M E 508] strongly encouraged.

Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2016

M E 714 — ADVANCED MATERIALS PROCESSING AND MANUFACTURING
3 credits.

Discusses the systematic integration of processing-material-performance relationships in various advanced materials processing and manufacturing processes. Enroll Info: ME 313 or cons inst

Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2013

M E 717 — ADVANCED POLYMER PROCESSING
3 credits.

Advanced analysis and modeling of plastics extrusion, injection molding, and other processes; mold and equipment design; materials consideration. Enroll Info: ME 417 or equiv or cons inst

Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2019

M E 718 — MODELING AND SIMULATION IN POLYMER PROCESSING
3 credits.

This course is designed to acquaint the student with computer simulation technology used for the engineering of polymer processes. Enroll Info: ME 417 or equiv or cons inst

Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E/E M A 722 — INTRODUCTION TO POLYMER RHEOLOGY
3 credits.

Formulation of constitutive equations using embedded base vectors. Viscosity, normal stress differences, stress relaxation, elastic recoil. Polymer rheology; homogeneous strain history. Enroll Info: Knowledge of differential equations [such as MATH 320] strongly encouraged.

Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E/E C E 739 — ADVANCED ROBOTICS
3 credits.

In-depth study of robotics modeling and control. Topics include kinematics, motion planning, dynamics and control of serial chain robotic manipulators. Concepts are explored through a combination of theoretical and numerical modeling techniques. Knowledge of high-level computational programming language such as MATLAB strongly encouraged. Enroll Info: None

Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E 740 — ADVANCED VIBRATIONS
3 credits.

Vibration of mechanical components subject to dynamic loads; analytical, numerical and finite element methods applied to the analysis and design of mechanical systems consisting of cables, bars, shafts, beams, frames, rings, membranes, plates and shells. Enroll Info: ME 440 or cons inst

Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2016
ME 746 — DYNAMICS OF CONTROLLED SYSTEMS
3 credits.

Emphasis on obtaining equations which define the behavior of physical systems frequently subjected to control; mechanical processing, fluid power, and thermal systems; analytical, experimental, and computer techniques. Enroll Info: ME 446 447, or cons inst
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

ME 747 — ADVANCED COMPUTER CONTROL OF MACHINES AND PROCESSES
3 credits.

Digital control theory, design methodology, and techniques for controller implementation on digital computers. Advanced single and multi-axis motion generation algorithms. Multiple processor control systems. Multiple objective control systems for machinery guidance and manufacturing processes. Precision control. Enroll Info: ME 446 447, or ECE 516, or cons inst
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

ME 748 — OPTIMUM DESIGN OF MECHANICAL ELEMENTS AND SYSTEMS
3 credits.

Formulation and solution of mechanical design problems by use of mathematical programming methods. Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2016

ME 751 — MATRIX METHODS IN THE DESIGN AND ANALYSIS OF MECHANISMS
3 credits.

Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

ME 753 — FRICTION, LUBRICATION AND WEAR
3 credits.

Behavior of frictional surfaces under different types of loading. Mechanisms of heat generation and surface damage (wear, scuffing, pitting, fretting, etc.). Rheological effects. Effect of lubrication. Surface interaction in metal cutting. Design considerations. Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2018

ME 758 — SOLID MODELING
3 credits.

Mathematical modeling, computer representations, and algorithms for manipulation of two- and three-dimensional shapes on a computer. Applications of shape modeling to design, representation, and analysis of mechanical parts and processes; other engineering and scientific applications of shape and solid modeling. Enroll Info: Knowledge of advanced programming [such as COMP SCI 400] and knowledge of linear algebra [such as MATH 340] strongly encouraged.
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2010

ME 759 — HIGH PERFORMANCE COMPUTING FOR APPLICATIONS IN ENGINEERING
3 credits.

An overview of hardware and software solutions that enable the use of advanced computing in tackling computationally intensive Engineering problems. Hands-on learning promoted through programming assignments that leverage emerging hardware architectures and use parallel computing programming languages. Students are strongly encouraged to have completed COMP SCI 367 or COMP SCI 400 or to have equivalent experience. Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

ME 761 — TOPICS IN THERMODYNAMICS
3 credits.

Thermostatic behavior of nonideal gases; equations of state, with emphasis on their empirical and statistical development, including mixture rules; more detailed study of chemical and phase equilibrium; selected applications of the foregoing; real gas processes, combustion, direct energy conversion devices. Enroll Info: ME 561 or cons inst
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020
M E 764 — ADVANCED HEAT TRANSFER I-CONDUCTION
3 credits.
Analytical methods in conduction; Bessel functions, separation of variables, Laplace transforms, superposition, oscillating solutions; computer methods; finite differences, finite elements. Enroll Info: ME 564 or cons inst
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E 765 — ADVANCED HEAT TRANSFER II-CONVECTION
3 credits.
Convection and mass-transfer principles, including boundary-layer phenomena in laminar and turbulent flow; internal flows; heat transfer in high-velocity flow, numerical methods. Enroll Info: ME 564 or cons inst
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2012

M E 769 — COMBUSTION PROCESSES
3 credits.
Combustion theory and practice. Thermodynamics of combustion, flame theory, detonation, spray and droplet combustion related to various engine applications. Enroll Info: ME 561 or cons inst
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2019

M E 770 — ADVANCED EXPERIMENTAL INSTRUMENTATION
3 credits.
Theory and design of instruments for transient physical phenomena especially related to internal combustion engines. Enroll Info: Cons inst basic electron course
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2016

M E 774 — CHEM KINETICS OF COMBUST SYSTEMS
3 credits.
Application of gas-phase chemical reaction rate theory to power and propulsion systems, both earthbound and airborne. Aerothermochemistry, kinetics of combustion reactions, kinetics related to air pollutant generation. Development and comparison of transition state theory, collision theory and bond-energy-bond-order method. Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E 775 — TURBULENT HEAT AND MOMENTUM TRANSFER
3 credits.
Stochastic methods in turbulent heat and momentum transfer; fully developed turbulence; numerical methods including model applications to boundary layers, reacting flows, mass transfer, and unsteady flows; linear and non-linear stability and transition; emphasis on applications of interest to Mechanical Engineers. Enroll Info: ME 563 or equiv
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2018

M E/E P 777 — VACUUM TECHNOLOGY
3 credits.
Topics defining modern vacuum technology, including the kinetic theory of gases, conductance, pumping systems, pump technologies, pressure measurement, gas-surface interactions, sealing technologies, leak detection, and residual gas analysis will be addressed through a combination of lectures, laboratory activities, problem solving, and group discussions. Enroll Info: Knowledge of fluid mechanics [such as M E 363 or B M E/CBE 320] strongly encouraged.
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

M E 790 — MASTER'S RESEARCH AND THESIS
1-9 credits.
Enroll Info: Master's candidates only
Requisites: Declared in a Mechanical Engineering graduate program
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E 890 — PHD RESEARCH AND THESIS
1-9 credits.
Enroll Info: for post-master's PhD candidates who have not attained dissertator status
Requisites: Declared in a Mechanical Engineering graduate program
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E 903 — GRADUATE SEMINAR
0 credits.
Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020
M E/CBE/CHEM/E M A 925 — RHEOLOGY RESEARCH SEMINAR
0-1 credits.
Exploration of the most recent research literature on viscoelasticity, constitutive equations, non-Newtonian flow systems, fluid metering devices, kinetic theory of macromolecules, and rheooptical phenomena. Periodic reports on recent advances made by research workers in the various rheology groups on the Madison campus. Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Fall 2011

M E 964 — SPECIAL ADVANCED TOPICS IN MECHANICAL ENGINEERING
1-3 credits.
Advanced topics in design, manufacturing, energy, etc. Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E 990 — DISSERTATOR RESEARCH AND THESIS
1-9 credits.
Enroll Info: Must have dissertator status
Requisites: Declared in Mechanical Engineering PhD
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020

M E 999 — ADVANCED INDEPENDENT STUDY
1-5 credits.
Enroll Info: None
Requisites: Consent of instructor
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2020