MEDICAL PHYSICS (MED PHYS)

MED PHYS/PHYSICS 265 — INTRODUCTION TO MEDICAL PHYSICS
2 credits.

Primarily for premeds and other students in the medical and biological sciences. Applications of physics to medicine and medical instrumentation. Topics: biomechanics, sound and hearing, pressure and motion of fluids, heat and temperature, electricity and magnetism in the body, optics and the eye, biological effects of light, use of ionizing radiation in diagnosis and therapy, radiation safety, medical instrumentation. Two lectures with demonstrations per week. Enroll Info: None

Requisites: PHYSICS 104, 202, or 208
Course Designation: Breadth - Physical Sci. Counts toward the Natural Sci req
Level - Intermediate
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Repeatable for Credit: No
Last Taught: Spring 2021

MED PHYS/H ONCOL 410 — RADIOBIOLOGY
2-3 credits.

Effects of ionizing radiations of living cells and organisms, including physical, chemical, and physiological bases of radiation cytotoxicity, mutagenicity, and carcinogenesis; lecture and lab. Enroll Info: None

Requisites: Graduate/professional standing or (PHYSICS 202 or 208 and ZOOLOGY/BIOLOGY/BOTANY 152 or 153)
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

MED PHYS/B M E/H ONCOL/PHYSICS 501 — RADIATION PHYSICS AND DOSIMETRY
3 credits.

Interactions and energy deposition by ionizing radiation in matter; concepts, quantities and units in radiological physics; principles and methods of radiation dosimetry. Enroll Info: None

Requisites: PHYSICS 323, 449 and MATH 320) or graduate/professional standing
Course Designation: Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2020

MED PHYS/N E 506 — MONTE CARLO RADIATION TRANSPORT
3 credits.

Use of Monte Carlo technique for applications in nuclear engineering and medical physics. Major theory of Monte Carlo neutral particle transport is discussed. Standard Monte Carlo transport software is used for exercises and projects. Major emphasis is on analysis of real-world problems. Enroll Info: None

Requisites: N E 305 and (N E 405, N E 408, PHYSICS/B M E/H ONCOL/ MED PHYS 501 or N E/MED PHYS 569) or graduate/professional standing
Course Designation: Breadth - Physical Sci. Counts toward the Natural Sci req
Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2021

MED PHYS/B M E 530 — MEDICAL IMAGING SYSTEMS
3 credits.

2D Fourier image representation, sampling, and image filtering with applications in medical imaging. Principles of operation, impulse responses, signal-to-noise, resolution and design tradeoffs in projection radiography, tomography, nuclear medicine, ultrasound, and magnetic resonance imaging. Enroll Info: None

Requisites: Graduate/professional standing or (E C E 330 or MED PHYS/ B M E 573)
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2021

MED PHYS/B M E 535 — INTRODUCTION TO ENERGY-TISSUE INTERACTIONS
3 credits.

Explore physical interactions between thermal, electromagnetic and acoustic energies and biological tissues with emphasis on therapeutic medical applications. Enroll Info: None

Requisites: PHYSICS 202, 208, 248, or PHYSICS/MED PHYS 265, or graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2017

MED PHYS/I SY E 559 — PATIENT SAFETY AND ERROR REDUCTION IN HEALTHCARE
2 credits.

Techniques for evaluating and reducing risks in medical procedures, including probabilistic risk assessment methods, failure mode and effects analysis, human factors analysis, and quality management. Discussions of patient safety standards, recommendations from agencies, and continual quality improvement. Enroll Info: None

Requisites: Consent of instructor
Course Designation: Level - Intermediate
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2019
MED PHYS/PHYSICS 563 — RADIONUCLIDES IN MEDICINE AND BIOLOGY
2-3 credits.
Physical principles of radioisotopes used in medicine and biology and operation of related equipment; lecture and lab. Enroll Info: None
Requisites: MATH 234 and (PHYSICS 241 or 249) or graduate/professional standing
Course Designation: Breadth - Physical Sci. Counts toward the Natural Sci req
Level - Intermediate
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2018

MED PHYS/B M E 566 — PHYSICS OF RADIOTHERAPY
3 credits.
Ionizing radiation use in radiation therapy to cause controlled biological effects in cancer patients. Physics of the interaction of the various radiation modalities with body-equivalent materials, and physical aspects of clinical applications. Enroll Info: None
Requisites: PHYSICS/B M E/H ONCOL/MED PHYS 501
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2021

MED PHYS/B M E 567 — THE PHYSICS OF DIAGNOSTIC RADIOLOGY
4 credits.
Physics of x-ray diagnostic procedures and equipment, radiation safety, general imaging considerations; lecture and lab. Enroll Info: None
Requisites: MATH 234 and (PHYSICS 241 or 249) or graduate/professional standing
Course Designation: Breadth - Biological Sci. Counts toward the Natural Sci req
Level - Intermediate
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2018

MED PHYS/B M E 568 — MAGNETIC RESONANCE IMAGING (MRI)
2 credits.
Core course covering the physics associated with magnetic resonance imaging emphasizing techniques employed in medical diagnostic imaging. Major MRI topics include: physics of MR, pulse sequences, hardware, imaging techniques, artifacts, and clinical applications. At the completion of this course, students should have an understanding of the technical and scientific details of modern magnetic resonance imaging and its use in diagnosing disease. Graduate students who have not taken MATH 222 and PHYSICS 202 at UW-Madison must have the equivalent coursework in order to be successful in this course. Enroll Info: None
Requisites: Graduate/professional standing or (MATH 222 and PHYSICS 202, 208, 241, 244, 248 or 249)
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2021

MED PHYS/N E 569 — HEALTH PHYSICS AND BIOLOGICAL EFFECTS
3-4 credits.
Physical and biological aspects of the use of ionizing radiation in industrial and academic institutions; physical principles underlying shielding instrumentation, waste disposal, biological effects of low levels of ionizing radiation; lecture and lab. Enroll Info: None
Requisites: MATH 234 and (PHYSICS 241 or 249) or graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2020

MED PHYS 571 — ADVANCED EXTERNAL RADIATION ONCOLOGY PHYSICS
3 credits.
Physics of ionizing radiation therapy with emphasis on external beam dosimetry and treatment planning. Enroll Info: None
Requisites: MED PHYS/B M E 566
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2011

MED PHYS 572 — ADVANCED RADIATION TREATMENT PLANNING
3 credits.
Physics of clinical, computer-based radiotherapy planning is taught. Topics include dose algorithms, measurement data, commissioning, contouring and volume definition, beam placement, modifiers and apertures and plan evaluation. Forward based and inverse planning (including IMRT optimization) are taught. Enroll Info: None
Requisites: MED PHYS/B M E 566
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

MED PHYS/B M E 573 — MEDICAL IMAGE SCIENCE: MATHEMATICAL AND CONCEPTUAL FOUNDATIONS
3 credits.
The conceptual and mathematical foundations of medical imaging, including both deterministic and stochastic aspects. Enroll Info: None
Requisites: MATH 234, 319 and (PHYSICS 202 or 208) or graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2020
MED PHYS/B M E 574 — IMAGING IN MEDICINE: APPLICATIONS
3 credits.
Builds on the fundamental conceptual and mathematical foundations addressed in MED PHYS/B M E 573, with application of concepts to practical medical imaging problems and emerging quantitative imaging techniques. Enroll Info: None
Requisites: MED PHYS/B M E 573
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2021

MED PHYS/B M E 575 — DIAGNOSTIC ULTRASOUND IMAGING
2 credits.
Propagation of ultrasonic waves in biological tissues; principles of ultrasonic measuring and imaging instrumentation; design and use of currently available tools for performance evaluation of diagnostic instrumentation; biological effects of ultrasound. Enroll Info: None
Requisites: Graduate/professional standing or (MATH 234, 319, or 320 and PHYSICS 202 or 208)
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2019

MED PHYS/B M E 578 — NON-IONIZING DIAGNOSTIC IMAGING
4 credits.
Covers the physics associated with magnetic resonance imaging and diagnostic ultrasound emphasizing techniques employed in medical diagnostic imaging. Major MRI topics include: physics of MR, pulse sequences, hardware, imaging techniques, artifacts, and spectroscopic localization. Ultrasound based topics covered include: propagation of ultrasonic waves in biological tissues, principles of ultrasonic measuring and imaging instrumentation, design and use of currently available tools for performance evaluation of diagnostic instrumentation, and biological effects of ultrasound. Gain an understanding of the technical and scientific details of modern non-ionizing medical magnetic resonance and ultrasound devices and their use in diagnosing disease. Enroll Info: None
Requisites: MATH 234, (MATH 319 or 320) and (PHYSICS 202, 208, 241 or 248), or graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2021

MED PHYS/B M E 580 — THE PHYSICS OF MEDICAL IMAGING WITH IONIZING RADIATION
4 credits.
Concepts and principles on the physics of medical imaging systems that form images using high energy photons are presented. Such systems are divided into two categories: (1) those based on the transmission of x-rays through the human body, including radiography, mammography, fluoroscopy, and computed tomography (CT), and (2) those based on the emission of gamma rays or annihilation radiation following radioactive decay of an internal radiolabeled molecule, including the gamma camera, single photon emission tomography (SPECT), and positron emission tomography (PET) and PET hybrid imaging systems. Emphasis is placed on understanding how physics, system design, and imaging technique determine image performance metrics such as contrast, signal-to-noise ratio, and spatial resolution. Clinical applications and radiation safety concepts are detailed for the different types of imaging systems. Enroll Info: None
Requisites: PHYSICS/B M E/H ONCOL/MED PHYS 501 and MED PHYS/B M E 573
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2021

MED PHYS/PHYSICS 588 — RADIATION PRODUCTION AND DETECTION
4 credits.
Fundamental physics of ionizing radiation production and detection applied to medical science. Topics: scintillator/semiconductor detectors, ionizing radiation detectors, charged and neutral particles for external beam radiotherapy, production of radionuclides with cyclotron and linear accelerators for diagnostic and therapeutic applications, radiochemistry, and X-ray tube physics. Enroll Info: None
Requisites: PHYSICS/B M E/H ONCOL/MED PHYS 501
Course Designation: Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No

MED PHYS/B M E/PHMCOL-M/PHYSICS/RADIOL 619 — MICROSCOPY OF LIFE
3 credits.
Survey of state of the art microscopic, cellular and molecular imaging techniques, beginning with subcellular microscopy and finishing with whole animal imaging. Enroll Info: None
Requisites: PHYSICS 104, 202, 208, or 248 or PHYSICS/MED PHYS 265
Course Designation: Level - Intermediate
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2020
MED PHYS/NTP 651 — METHODS FOR NEUROIMAGING RESEARCH
3 credits.

Provides a practical foundation for neuroimaging research studies with statistical image analysis. Specific imaging methods include functional BOLD MRI, structural MRI morphometry, and diffusion tensor imaging. Lectures and associated in-class computer exercises will cover the physics and methods of image acquisition, steps and tools for image analyses, the basis for statistical image analyses and interpretation of the results. Enroll Info: None
Requisites: Graduate/professional standing or (PHYSICS 104, 202 or 208)
Course Designation: Level - Advanced
L&S Credit - Counts as Liberal Arts and Science credit in L&S
Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2020

MED PHYS 662 — RAD LAB - DIAGNOSTIC RADIOLOGICAL PHYSICS
1 credit.

Provides hands on experience using and testing radiographic, fluoroscopic and mammographic x-ray systems. Imaging requirements, image quality, and radiation dose aspects of each modality are covered, along with practical methods for evaluating the performance of clinical units. Enroll Info: None
Requisites: MED PHYS/B MED PHYS 567
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

MED PHYS 663 — RAD LAB - NUCLEAR MEDICINE PHYSICS
1 credit.

Provides an introduction to the technical skills required in nuclear medicine physics. This will include laboratory rotations in basic radiopharmaceutical production and quality control, basic operation and quality control testing on PET and SPECT scanners, time series image analysis of radiotracer studies and nuclear medicine dosimetry and radiation safety training. The student will gain a firsthand understanding of the professional duties performed by a nuclear medicine medical physicist. Enroll Info: None
Requisites: PHYSICS/MED PHYS 563
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

MED PHYS 664 — RAD LAB - HEALTH PHYSICS
1 credit.

Uses project-based learning (PBL) as a powerful teaching method to address common challenges and solutions addressed by medical health physicists. Each semester, students work on a different project that addresses concepts that are important in the current health physics environment. Enroll Info: None
Requisites: Consent of instructor
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2017

MED PHYS 665 — RAD LAB: CT, MRI, AND DSA PHYSICS
1 credit.

Provides hands on experience using and testing computerized tomography (CT), magnetic resonance imaging (MRI), and digital subtraction angiography (DSA) systems. Image quality, MRI and radiation safety, accreditation, and regulatory compliance issues with these modalities are also covered. Enroll Info: None
Requisites: MED PHYS/B MED PHYS 567 and MED PHYS/B MED PHYS 568
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2019

MED PHYS 666 — RAD LAB - MEDICAL ULTRASOUND PHYSICS
1 credit.

Introduces concepts and methodology for measuring acoustic properties of materials and for operating and performing physics tests of state of the art clinical ultrasound scanners. Students set up and operate a laboratory apparatus employing single element ultrasound transducers. This is followed by hands on experiments that challenge students to explain physical and engineering characteristics of clinical scanners, details of operator controls, features of Doppler and color flow modes, and resolution limitations. Practical scanning exercises provide familiarity with selected applications of clinical ultrasound equipment, both for diagnosis and for guiding interventions. Routine quality assurance tests done by medical physicists are also performed. Enroll Info: None
Requisites: MED PHYS/B MED PHYS 575
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2018

MED PHYS 671 — SELECTED TOPICS IN MEDICAL PHYSICS
1-4 credits.

In-depth examination of current and newly discovered modalities and/or phenomena in medical physics. Critical reading of literature, hands-on lab work and exploration of medical issues related to discoveries will be included. Enroll Info: None
Requisites: Consent of instructor
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2021

MED PHYS 679 — RADIATION PHYSICS METROLOGY
3 credits.

Metrology, the science of measurement, is a critical component of medical physics. Topics covered: measurement statistics, determination of uncertainty, characteristics of ionization chambers, electrometers and other ionizing radiation measurement devices. Effects of instrumentation on clinical measurements. Enroll Info: None
Requisites: PHYSICS/B MED PHYS/MED PHYS 501
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2020
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED PHYS 699</td>
<td>INDEPENDENT READING OR RESEARCH</td>
</tr>
<tr>
<td>1-3 credits.</td>
<td>Provides opportunities for graduate students to gain experience using the</td>
</tr>
<tr>
<td></td>
<td>scientific method to address specific scientific problems. This includes</td>
</tr>
<tr>
<td></td>
<td>selection of a research topic, performing literature reviews to evaluate</td>
</tr>
<tr>
<td></td>
<td>peer-reviewed and other publications, developing a research design,</td>
</tr>
<tr>
<td></td>
<td>identifying possible pitfalls, and performing and reporting on experiments</td>
</tr>
<tr>
<td></td>
<td>performed. Communication of the research findings within and outside the</td>
</tr>
<tr>
<td></td>
<td>university is encouraged. Enroll Info: None</td>
</tr>
<tr>
<td></td>
<td>Requisites: Consent of instructor</td>
</tr>
<tr>
<td></td>
<td>Course Designation: Level - Advanced</td>
</tr>
<tr>
<td></td>
<td>L&amp;S Credit - Counts as Liberal Arts and Science credit in L&amp;S</td>
</tr>
<tr>
<td></td>
<td>Grad 50% - Counts toward 50% graduate coursework requirement</td>
</tr>
<tr>
<td></td>
<td>Repeatable for Credit: Yes, unlimited number of completions</td>
</tr>
<tr>
<td></td>
<td>Last Taught: Spring 2021</td>
</tr>
<tr>
<td>MED PHYS 701</td>
<td>ETHICS AND THE RESPONSIBLE CONDUCT OF RESEARCH AND PRACTICE OF MEDICAL</td>
</tr>
<tr>
<td>1 credit.</td>
<td>physics. Addresses the concepts of ethics in the daily practice of medical</td>
</tr>
<tr>
<td></td>
<td>physics and other scientific disciplines and provide tools for identifying</td>
</tr>
<tr>
<td></td>
<td>resources. Special emphasis will be placed in how these principles have</td>
</tr>
<tr>
<td></td>
<td>to be applied to ensure the confidentiality of the patients, the safety of</td>
</tr>
<tr>
<td></td>
<td>the research subjects (human and animals), differentiation between</td>
</tr>
<tr>
<td></td>
<td>ethical and legal issues, as well as the understanding of the principles</td>
</tr>
<tr>
<td></td>
<td>that deal with authorships, intellectual property in the academic- and</td>
</tr>
<tr>
<td></td>
<td>industry-based environment. Enroll Info: None</td>
</tr>
<tr>
<td></td>
<td>Requisites: Consent of instructor</td>
</tr>
<tr>
<td></td>
<td>Course Designation: Grad 50% - Counts toward 50% graduate coursework</td>
</tr>
<tr>
<td></td>
<td>requirement</td>
</tr>
<tr>
<td></td>
<td>Repeatable for Credit: No</td>
</tr>
<tr>
<td></td>
<td>Last Taught: Fall 2020</td>
</tr>
<tr>
<td>MED PHYS 705</td>
<td>WOMEN AND LEADERSHIP: SCIENCE, HEALTH AND ENGINEERING</td>
</tr>
<tr>
<td>3 credits.</td>
<td>Multiple professional and scientific groups have identified the</td>
</tr>
<tr>
<td></td>
<td>underrepresentation and lack of advancement of women in academia</td>
</tr>
<tr>
<td></td>
<td>as a national workforce problem. This course will review evaluating</td>
</tr>
<tr>
<td></td>
<td>perspectives of leadership and how unconscious assumptions about the</td>
</tr>
<tr>
<td></td>
<td>behaviors and traits of men, women, and leaders impede women’s</td>
</tr>
<tr>
<td></td>
<td>advancement. The course will emphasize the implications for women in the</td>
</tr>
<tr>
<td></td>
<td>fields of science, health and engineering and explore the potential</td>
</tr>
<tr>
<td></td>
<td>impact on the advancement of knowledge and improvements in health. The</td>
</tr>
<tr>
<td></td>
<td>course also provides the opportunity to apply evidence-based perspectives</td>
</tr>
<tr>
<td></td>
<td>using experiential methods. Enroll Info: None</td>
</tr>
<tr>
<td></td>
<td>Requisites: Graduate/professional standing</td>
</tr>
<tr>
<td></td>
<td>Course Designation: Grad 50% - Counts toward 50% graduate coursework</td>
</tr>
<tr>
<td></td>
<td>requirement</td>
</tr>
<tr>
<td></td>
<td>Repeatable for Credit: No</td>
</tr>
<tr>
<td></td>
<td>Last Taught: Fall 2020</td>
</tr>
<tr>
<td>MED PHYS 710</td>
<td>ADVANCES IN MEDICAL MAGNETIC RESONANCE</td>
</tr>
<tr>
<td>3 credits.</td>
<td>Addresses the theory and applications of magnetic resonance (MR) in medicine,</td>
</tr>
<tr>
<td></td>
<td>by providing the necessary theoretical background to understand advanced MR</td>
</tr>
<tr>
<td></td>
<td>techniques including magnetic resonance imaging (MRI). Enroll Info: None</td>
</tr>
<tr>
<td></td>
<td>Requisites: MED PHYS/B M E 568</td>
</tr>
<tr>
<td></td>
<td>Course Designation: Grad 50% - Counts toward 50% graduate coursework</td>
</tr>
<tr>
<td></td>
<td>requirement</td>
</tr>
<tr>
<td></td>
<td>Repeatable for Credit: No</td>
</tr>
<tr>
<td></td>
<td>Last Taught: Fall 2020</td>
</tr>
<tr>
<td>MED PHYS 719</td>
<td>MULTI-MODALITY MOLECULAR IMAGING IN LIVING SUBJECTS</td>
</tr>
<tr>
<td>3 credits.</td>
<td>Provides an overview of all major areas in molecular imaging, based on</td>
</tr>
<tr>
<td></td>
<td>each imaging modality. Additional topics include, but are not limited to,</td>
</tr>
<tr>
<td></td>
<td>role of molecular imaging in stem cell research, molecular imaging with</td>
</tr>
<tr>
<td></td>
<td>nanoparticles, theranostics, molecular imaging in drug development,</td>
</tr>
<tr>
<td></td>
<td>optical imaging and its clinical applications, reporter gene imaging,</td>
</tr>
<tr>
<td></td>
<td>imaging of apoptosis, PET imaging of cancer, imaging protein-protein</td>
</tr>
<tr>
<td></td>
<td>interactions. Enroll Info: None</td>
</tr>
<tr>
<td></td>
<td>Requisites: Consent of instructor</td>
</tr>
<tr>
<td></td>
<td>Course Designation: Grad 50% - Counts toward 50% graduate coursework</td>
</tr>
<tr>
<td></td>
<td>requirement</td>
</tr>
<tr>
<td></td>
<td>Repeatable for Credit: No</td>
</tr>
<tr>
<td></td>
<td>Last Taught: Spring 2013</td>
</tr>
<tr>
<td>MED PHYS/B M E/CHM 750</td>
<td>BIOLOGICAL OPTICAL MICROSCOPY</td>
</tr>
<tr>
<td>3 credits.</td>
<td>Covers several aspects of state-of-the-art biological and biophysical</td>
</tr>
<tr>
<td></td>
<td>imaging with an emphasis on instrumentation, beginning with an overview of</td>
</tr>
<tr>
<td></td>
<td>geometrical optics and optical and fluorescence microscopy. The bulk of the</td>
</tr>
<tr>
<td></td>
<td>course will focus on advanced imaging techniques including nonlinear optical</td>
</tr>
<tr>
<td></td>
<td>processes (multi-photon excitation, second harmonic generation, and</td>
</tr>
<tr>
<td></td>
<td>stimulated Raman processes) and emerging super-resolution methods. Special</td>
</tr>
<tr>
<td></td>
<td>emphasis will be given to current imaging literature and experimental</td>
</tr>
<tr>
<td></td>
<td>design. Enroll Info: Knowledge of physics-based optics [such as PHYSICS 202]</td>
</tr>
<tr>
<td></td>
<td>strongly recommended. Requisites: Graduate/professional standing</td>
</tr>
<tr>
<td></td>
<td>Course Designation: Grad 50% - Counts toward 50% graduate coursework</td>
</tr>
<tr>
<td></td>
<td>requirement</td>
</tr>
<tr>
<td></td>
<td>Repeatable for Credit: No</td>
</tr>
<tr>
<td></td>
<td>Last Taught: Spring 2020</td>
</tr>
<tr>
<td>MED PHYS 770</td>
<td>ADVANCED BRACHYTHERAPY PHYSICS</td>
</tr>
<tr>
<td>3 credits.</td>
<td>The use of radioactive sources for radiotherapy including: materials</td>
</tr>
<tr>
<td></td>
<td>used, source construction dosimetry theory and practical application,</td>
</tr>
<tr>
<td></td>
<td>dosimetric systems, localization and reconstruction. Covers low dose rate,</td>
</tr>
<tr>
<td></td>
<td>high dose rate and permanently placed applications. Enroll Info: None</td>
</tr>
<tr>
<td></td>
<td>Requisites: MED PHYS/B M E 566</td>
</tr>
<tr>
<td></td>
<td>Course Designation: Grad 50% - Counts toward 50% graduate coursework</td>
</tr>
<tr>
<td></td>
<td>requirement</td>
</tr>
<tr>
<td></td>
<td>Repeatable for Credit: No</td>
</tr>
<tr>
<td></td>
<td>Last Taught: Spring 2019</td>
</tr>
</tbody>
</table>
MED PHYS/B ME/PHYSICS 775 — ADVANCED ULTRASOUND PHYSICS
3 credits.

Foundations of acoustic wave equations, diffraction phenomena and acoustic beam formation, models for acoustic scattering from discrete structures and inhomogeneous continua, speckle statistics including speckle correlation, applications of these topics in medical imaging. Enroll Info: None
Requisites: Consent of instructor
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2013

MED PHYS 777 — PRINCIPLES OF X-RAY COMPUTED TOMOGRAPHY
3 credits.

Understand the basic principles of x-ray computed tomography (CT), and how to think when a technical problem arises in CT. Accomplished through a review of the history of CT developments and key components of CT systems, lectures on various CT reconstruction algorithms, image quality, and radiation dose, origin and correction methods of various CT artifacts. Enroll Info: None
Requisites: Consent of instructor
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2020

MED PHYS/B ME/ECE 778 — MACHINE LEARNING IN ULTRASOUND IMAGING
3 credits.

Concepts and machine learning techniques for ultrasound beamforming for image formation and reconstruction to image analysis and interpretation will be presented. Key machine learning and deep learning concepts applied to beamforming, compressed sampling, speckle reduction, segmentation, photoacoustics, and elasticity imaging will be evaluated utilizing current peer-reviewed publications. Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Fall 2020

MED PHYS 780 — PHARMACOKINETIC MODELING IN BIOMEDICAL IMAGING
2 credits.

Concepts and techniques of pharmacokinetic modeling will be presented in the context of biomedical imaging. Examine applications in various specialties, e.g. neurology and oncology, using different imaging tools, e.g. positron emission tomography (PET) and magnetic resonance imaging (MRI). Enroll Info: None
Requisites: Graduate/professional standing
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: No
Last Taught: Spring 2020

MED PHYS 900 — JOURNAL CLUB AND SEMINAR
1 credit.

Provides medical physics graduate students with the opportunity to critically evaluate and report on published research and/or research seminar presentations by speakers, from both within the university and from the larger scientific community. Enroll Info: None
Requisites: Consent of instructor
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2021

MED PHYS 990 — RESEARCH
1-12 credits.

Provides graduate students with mentorship to support their development of independent research goals and methods needed to address specific scientific problems that will result in a comprehensive dissertation. Enroll Info: None
Requisites: Consent of instructor
Course Designation: Grad 50% - Counts toward 50% graduate coursework requirement
Repeatable for Credit: Yes, unlimited number of completions
Last Taught: Spring 2021