The department emphasizes in vivo and in vitro studies that probe relationships at a fundamental mechanistic level as well as address current practical issues in animal agriculture. Studies may often employ the use of livestock or laboratory animals, or both, as subjects. Development of an individual course of study is flexible in order to meet the needs of students with varied interests. Graduates find employment in academic teaching and research, in professional veterinary or medical degree programs, in industrial research in the food and feed industries, in laboratory research programs with governmental and international agencies, private corporations, and in industrial or institutional management positions requiring a high level of scientific training.

The program is based in the Animal Sciences Building, which contains facilities for teaching and research, including a Computing and Biometry Laboratory and the Biological and Biomaterials Preparation Imaging and Characterization Facility. Nearby are the Livestock Laboratory, a state-of-the-art facility, and the Muscle Biology Laboratory. Teaching, research, and project assistantships are available to qualified students. Fellowships, scholarships, and traineeship awards are available from federal training programs, research grants, gifts and trusts, and special program funds.

RESEARCH FOCUS AREAS

Students may choose to focus on the areas of: nutrition, rumen microbiology, aquaculture, reproductive physiology—endocrinology, genetics, animal breeding, muscle biology, meat science, cell biology, animal health, immunity and toxicology, or international agriculture. Considerable opportunity for study exists in joint programs with bacteriology, toxicology, biochemistry, the interdepartmental graduate program in nutritional sciences, genetics, endocrinology, reproductive physiology training program, food science, physiology, agricultural and applied economics, biometry, cellular and molecular biology, pharmaceutical sciences, chemical and biological engineering, bio engineering, comparative biosciences, and anatomy.

The area of nutrition involves a joint degree with Animal Sciences and either the Department of Nutritional Sciences or the Department of Biochemistry. Usually, students work with professors from both departments so fundamental concepts complement practical applications. Ruminant nutrition candidates often minor or have a joint major in the Department of Bacteriology. Nutritional research ranges from field studies to laboratory biochemical studies.

The endocrinology–reproductive physiology area ranges from hormonal studies with livestock, primates, and laboratory animals to biochemical studies at the cellular level including stem cell biology. These studies include mechanism of gene action, physiological genetics, in vitro maturation, fertilization, embryo development, cloning and gene transfer, neuroendocrinology, and the environmental and genetic control of puberty and postpartum anestrus.

The genetics–animal breeding focus includes a variety of areas from immunogenetics and molecular genetics to quantitative and population genetics. The animal breeding program seeks to develop, evaluate, and apply classical, quantitative, biochemical, and physiological genetics toward improving animal breeding techniques. Studies range from theoretical considerations of quantitative genetics to laboratory experimentation on genetic controls of growth and reproduction, gene transfer and cloning to field experimentation on producer herds and flocks. Candidates may minor in several areas including genetics, statistics, physiology, or biochemistry.

Meat science and muscle biology studies probe the relationship of muscle structure, composition, and metabolism to growth, the contractile function, and meat quality. Similar studies related to adipose tissue are included. This fundamental research is applied to muscle efficiency and improved retail meat quality and composition.

The area of cellular biology, animal health, immunity, and toxicology includes basic research which seeks to develop an understanding of cellular/subcellular structure and function, cell regulation, and cell–cell interactions. Cell function, as it relates to mechanisms of immunity and the effects of natural and synthetic compounds, forms the basis for investigations using in vitro and in vivo, whole animal, model systems. Results of fundamental studies are directly applicable and coordinated with ongoing applied research programs in animal and human health.