Graduate work in the Department of Biological Systems Engineering (BSE) leads to the master of science and doctor of philosophy degrees. Graduates of the program help fill the need for highly educated engineers in industry, consulting firms, government agencies, and educational institutions.

Students who undertake graduate studies in BSE normally have as their goal a better understanding of the current theories, principles, issues, and problems in biological systems. They desire to learn how knowledge is generated, how it is critically evaluated, and how solutions to problems are generated and applied. Graduate studies improve the ability of students to think critically and creatively, and to synthesize, analyze, and integrate ideas for decision making and problem solving.

The department offers students an opportunity to undertake research and advanced study in different specializations such as biological systems, environmental quality and natural resource engineering, waste management, food and bioprocess engineering, nanotechnology and biosensing, machinery systems, bio-resources and bio-refining, and agricultural safety and health.

Graduate research assistantships, project assistantships, and fellowships are available on a highly competitive basis.

ADMISSIONS

Please consult the table below for key information about this degree program’s admissions requirements. The program may have more detailed admissions requirements, which can be found below the table or on the program’s website.

Graduate admissions is a two-step process between academic programs and the Graduate School. **Applicants must meet the minimum requirements (https://grad.wisc.edu/apply/requirements/) of the Graduate School as well as the program(s).** Once you have researched the graduate program(s) you are interested in, apply online (https://grad.wisc.edu/apply/).

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Deadline</td>
<td>February 1</td>
</tr>
<tr>
<td>Spring Deadline</td>
<td>September 1</td>
</tr>
<tr>
<td>Summer Deadline</td>
<td>November 1</td>
</tr>
<tr>
<td>GRE (Graduate Record Examinations)</td>
<td>Not required</td>
</tr>
<tr>
<td>English Proficiency Test</td>
<td>Every applicant whose native language is not English, or whose undergraduate instruction was not exclusively in English, must provide an English proficiency test score earned within two years of the anticipated term of enrollment. Refer to the Graduate School: Minimum Requirements for Admission policy: https://policy.wisc.edu/library/UW-1241.</td>
</tr>
</tbody>
</table>

FUNDING

GRADUATE SCHOOL RESOURCES

Resources to help you afford graduate study might include assistantships, fellowships, traineeships, and financial aid. Further funding information (https://grad.wisc.edu/funding/) is available from the Graduate School. Be sure to check with your program for individual policies and restrictions related to funding.

PROGRAM INFORMATION

Funding decisions are made by faculty supervisors of the admitted students based on the funding availability and project need.

REQUIREMENTS

MINIMUM GRADUATE SCHOOL REQUIREMENTS

Review the Graduate School minimum academic progress and degree requirements (http://guide.wisc.edu/graduate/#policiesandrequirementstext), in addition to the program requirements listed below.

MAJOR REQUIREMENTS

<table>
<thead>
<tr>
<th>MODE OF INSTRUCTION</th>
<th>Face to Face</th>
<th>Evening/Weekend</th>
<th>Online</th>
<th>Hybrid</th>
<th>Accelerated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Mode of Instruction Definitions

Accelerated: Accelerated programs are offered at a fast pace that condenses the time to completion. Students typically take enough credits aimed at completing the program in a year or two.

Evening/Weekend: Courses meet on the UW–Madison campus only in evenings and/or on weekends to accommodate typical business schedules. Students have the advantages of face-to-face courses with the flexibility to keep work and other life commitments.

Face-to-Face: Courses typically meet during weekdays on the UW–Madison Campus.

Hybrid: These programs combine face-to-face and online learning formats. Contact the program for more specific information.

Online: These programs are offered 100% online. Some programs may require an on-campus orientation or residency experience, but the courses will be facilitated in an online format.

CURRICULAR REQUIREMENTS

Requirement Detail

Minimum Credit Requirement	30 credits
Minimum Residence Credit Requirement	16 credits
Minimum Graduate Coursework Requirement	15 credits must be graduate-level coursework. Refer to the Graduate School: Minimum Graduate Coursework Requirement: 50% Requirement policy: https://policy.wisc.edu/library/UW-1244/.
Overall GPA	3.00 GPA required. Refer to the Graduate School: Grade Point Average (GPA) Requirement policy: https://policy.wisc.edu/library/UW-1203/.
Other Grade Requirements	Students must maintain a minimum overall B average (3.0 GPA) during their graduate studies. Seminars, research, or other special problems credits may not be used to offset BC or C grades. No grade below a C will be accepted for fulfilling course work requirements for the degree.
Assessments and Examinations	All students must complete a graduation checklist and be certified by the Biological Systems Engineering Graduate Instruction and Research Committee before taking their final oral examination.
Language Requirements	n/a

REQUIRED COURSES

Thesis Pathway

If a student’s objective is to pursue a PhD degree and/or research-oriented career, they are strongly encouraged to select the Thesis pathway. Courses taken to satisfy admission requirements do not fulfill the minimum degree requirements.

Pathways are internal to the program and represent different curricular paths a student can follow to earn this degree. Pathway names do not appear in the Graduate School admissions application, and they will not appear on the transcript.

Biological Systems Engineering Graduate Instruction and Research Committee approved Science and Engineering Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSE 900</td>
<td>Research</td>
<td>6</td>
</tr>
<tr>
<td>BSE 900</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>BSE 901</td>
<td>Graduate Research Seminar</td>
<td>4</td>
</tr>
<tr>
<td>Additional BSE Graduate Instruction and Research Committee approved Science and Engineering Credits or BSE 990 to reach 30 credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

1. BSE 900 is offered in the fall semester only. It is taken during the first fall semester of graduate study. BSE 901 is offered in the spring semester and can be taken each spring. During a student’s last spring semester, they give a presentation in BSE 901 to meet the second seminar credit requirement.

2. "Biological Systems Engineering Graduate Instruction and Research Committee approved Science and Engineering courseware" used to meet this requirement must be letter-graded and numbered 300 and above.

Biological Systems Engineering Graduate Instruction and Research Committee Approved Science and Engineering Credits

All courses for the "Biological Systems Engineering Graduate Instruction and Research Committee approved Science and Engineering Credits" requirement should be selected in consultation with your advisor to create a cohesive program of study.

- These courses must be numbered 300 and above and letter graded A-F.
- A minimum of 9 credits must hold the "Grad 50%" attribute.
- If a course is offered for credit/no-credit only, prior approval from an advisor may be given for a student to complete no more than 1 credit for credit/no-credit.
- BSE 900, BSE 901, BSE 990, and BSE 999 credits may not be used to meet this requirement.

Research Credits

BSE 999 credits are limited to 3 credits. These credits must be separate from the work the student is doing for BSE 990 credit and shall be taken under the direction of an instructor other than the major advisor.

Non-Thesis Pathway

Pathways are internal to the program and represent different curricular paths a student can follow to earn this degree. Pathway names do not appear in the Graduate School admissions application, and they will not appear on the transcript.
<table>
<thead>
<tr>
<th>Credits Earned as a Professional Student at UW-Madison (Law, Medicine, Pharmacy, and Veterinary careers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to the Graduate School: Transfer Credits for Prior Coursework (https://policy.wisc.edu/library/UW-1216/) policy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits Earned as a University Special student at UW-Madison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to the Graduate School: Transfer Credits for Prior Coursework (https://policy.wisc.edu/library/UW-1216/) policy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to the Graduate School: Probation (https://policy.wisc.edu/library/UW-1217/) policy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVISOR / COMMITTEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to the Graduate School: Advisor (https://policy.wisc.edu/library/UW-1218/) policy.</td>
</tr>
</tbody>
</table>

Policies

Graduate School Policies

The Graduate School’s Academic Policies and Procedures (https://grad.wisc.edu/acadpolicy/) provide essential information regarding general university policies. Program authority to set degree policies beyond the minimum required by the Graduate School lies with the degree program faculty. Policies set by the academic degree program can be found below.

Major-Specific Policies

Prior Coursework

Graduate Credits Earned at Other Institutions

Refer to the Graduate School: Transfer Credits for Prior Coursework (https://policy.wisc.edu/library/UW-1216/) policy.

Undergraduate Credits Earned at Other Institutions or UW-Madison

Refer to the Graduate School: Transfer Credits for Prior Coursework (https://policy.wisc.edu/library/UW-1216/) policy.

Biological Systems Engineering Graduate Instruction and Research Committee Approved Science and Engineering Credits

All courses for the “Biological Systems Engineering Graduate Instruction and Research Committee Approved Science and Engineering Credits” requirement should be selected in consultation with your advisor to create a cohesive program of study.

- These courses must be numbered 300 and above and letter graded A-F.
- A minimum of 9 credits must hold the “Grad 50%” attribute.
- If a course is offered for credit/no-credit only, prior approval from an advisor may be given for a student to complete no more than 1 credit for credit/no-credit.
- BSE 900, BSE 901, BSE 990, and BSE 999 credits may not be used to meet this requirement.

Credits or BSE 990 to reach 30 credits

<table>
<thead>
<tr>
<th>BSE 900</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSE 901</td>
<td>Graduate Research Seminar</td>
</tr>
</tbody>
</table>

Total Credits

1 BSE 900 is offered in the fall semester only. It is be taken during the first fall semester of graduate study. BSE 901 is offered in the spring semester and can be taken each spring. During a student’s last spring semester, they give a presentation in BSE 901 to meet the second seminar credit requirement.

2 “Biological Systems Engineering Graduate Instruction and Research Committee approved Science and Engineering Credits” used to meet this requirement should be letter-graded and numbered 300 and above.
In the College of Agricultural and Life Sciences (CALS), any student who feels unfairly treated by a member of the CALS faculty or staff has the right to complain about the treatment and to receive a prompt hearing. Some complaints may arise from misunderstandings or communication breakdowns and be easily resolved; others may require formal action. Complaints may concern any matter of perceived unfairness.

To ensure a prompt and fair hearing of any complaint, and to protect the rights of both the person complaining and the person at whom the complaint is directed, the following procedures are used in the College of Agricultural and Life Sciences. Any student, undergraduate or graduate, may use these procedures, except employees whose complaints are covered under other campus policies.

1. The student should first talk with the person at whom the complaint is directed. Most issues can be settled at this level. Others may be resolved by established departmental procedures.

2. If the student is unsatisfied, and the complaint involves any unit outside CALS, the student should seek the advice of the dean or director of that unit to determine how to proceed.
 a. If the complaint involves an academic department in CALS the student should proceed in accordance with item 3 below.
 b. If the grievance involves a unit in CALS that is not an academic department, the student should proceed in accordance with item 4 below.

3. The student should contact the department’s grievance advisor within 120 calendar days of the alleged unfair treatment. The departmental administrator can provide this person’s name. The grievance advisor will attempt to resolve the problem informally within 10 working days of receiving the complaint, in discussions with the student and the person at whom the complaint is directed.
 a. If informal mediation fails, the student can submit the grievance in writing to the grievance advisor within 10 working days of the date the student is informed of the failure of the mediation attempt by the grievance advisor. The grievance advisor will provide a copy to the person at whom the grievance is directed.
 b. The grievance advisor will refer the complaint to a department committee that will obtain a written response from the person at whom the complaint is directed, providing a copy to the student. Either party may request a hearing before the committee. The grievance advisor will provide both parties a written decision within 20 working days from the date of receipt of the written complaint.
 c. If the grievance involves the department chairperson, the grievance advisor or a member of the grievance committee, these persons may not participate in the review.
 d. If not satisfied with departmental action, either party has 10 working days from the date of notification of the departmental committee action to file a written appeal to the CALS Equity and Diversity Committee. A subcommittee of this committee will make a preliminary judgement as to whether the case merits further investigation and review. If the subcommittee unanimously determines that the case does not merit further investigation and review, its decision is final. If one or more members of the subcommittee determine that the case does merit further investigation and review, the subcommittee will investigate and seek to resolve the dispute through mediation. If this mediation attempt fails, the subcommittee will bring the case to the full committee. The committee may seek additional information from the parties or hold a hearing. The committee will present a written recommendation to the dean who will provide a final decision within 20 working days of receipt of the committee recommendation.

4. If the alleged unfair treatment occurs in a CALS unit that is not an academic department, the student should, within 120 calendar days of the alleged incident, take his/her grievance directly to the Associate Dean of Academic Affairs. The dean will attempt to resolve the problem informally within 10 working days of receiving the complaint. If this mediation attempt does not succeed the student may file a written complaint with the dean who will refer it to the CALS Equity and Diversity Committee. The committee will seek a written response from the person at whom the complaint is directed, subsequently following other steps delineated in item 3d above.

OTHER
n/a

PROFESSIONAL DEVELOPMENT

PROFESSIONAL DEVELOPMENT

GRADUATE SCHOOL RESOURCES

Take advantage of the Graduate School’s professional development resources (https://grad.wisc.edu/pd/) to build skills, thrive academically, and launch your career.

LEARNING OUTCOMES

1. Articulates, critiques, or elaborates the theories, research methods, and approaches to inquiry or schools of practice in the field of study.
2. Identifies sources and assembles evidence pertaining to questions or challenges in the field of study.
3. Demonstrates understanding of the primary field of study in a historical, social, or global context.
4. Selects and/or utilizes the most appropriate methodologies and practices.
5. Evaluates or synthesizes information pertaining to questions or challenges in the field of study.
6. Recognizes and applies principles of ethical and professional conduct.
Dr. Neslihan Akdeniz
Developing climate-smart technologies to improve the profitability of livestock producers; finding alternative ways of utilizing co-products of animal agriculture; assessing air quality inside livestock buildings for improved occupational health; exploring strategies to minimize the impacts of foreign animal diseases; organizing extension activities to deliver on-farm research knowledge. I make every attempt to include graduate students in my extension program to enhance their networking opportunities.

Dr. Robert Anex
Biological systems analysis and assessment; life cycle assessment; techno-economic analysis

Dr. Christopher Choi
Heat and mass transfer and computational fluid dynamics (CFD); controlled environments – livestock housing and greenhouse; water distribution system modeling and water quality; experimental methods, data acquisition, and systems optimization in biological systems

Dr. Matthew Digman
Impact of autonomy on agricultural machine forms; application of sensors to predict chemical and physical properties of agricultural materials

Dr. Sundaram Gunasekaran
Engineering properties and quality of food and biomaterials; rheology of food and other macromolecular systems and hydrogels; structure function relationships in foods; novel and value-added bioprocess engineering

Dr. Margaret Kalcic
Watershed modeling; watershed management; conservation practice effectiveness; agricultural hydrology; nutrient transport; water quality; land use change; climate change

Dr. K.G. Karthikeyan
Fate, removal, and transport of nutrients and contaminants in surface/subsurface environments; water quality chemistry; land application of agricultural/municipal/industrial waste; applications of GIS/water quality models; physical and chemical processes for water, wastewater, and waste treatment; soil decontamination

Dr. Brian Luck
Machine management, variable rate technology; agricultural “Big Data” management; remote sensing

Dr. Mallika Nocco
Evapotranspiration; regenerative irrigation; deficit irrigation; drought resilience; managed aquifer recharge; precision agriculture; transpiration & distribution uniformity; soil-plant-water relations; feedbacks between irrigation and climate; aerial remote sensing; soil and water conservation; soil health; agrohydrology; science communication and extension

Dr. Xuejun Pan
Development of innovative biorefining process for producing energy, fuels, chemicals, and materials from renewable resources (biomass) with specific research interests in pretreatment and fractionation of lignocellulosic biomass for bioconversion to chemicals and fuels; enzymatic and non-enzymatic saccharification of cellulose and lignocellulose; catalytic conversion of lignocellulose to drop-in hydrocarbon fuel; platform chemicals from biomass; functional materials from cellulose, lignin, hemicellulose, and extractives.

Dr. Douglas Reinemann
Biomechanics of machine milking; sustainable development of bio-energy systems; renewable energy technology and policy; biosensors for milk quality analysis; effects of the electrical environment on farm animals; integral thought and philosophy

Dr. Troy Runge
Bioenergy – biomass composition impact on bioprocessing systems, including anaerobic digestion, combustion, gasification, and catalysis; Biomaterials – pulp, paper, bio-based chemicals, cellulose composites and nonwoven structures

Dr. John Shutteske
Safety engineering and education related to occupational and public health hazards in agricultural and food systems; multidisciplinary approaches for solving complex risk-related problems; design and evaluation of sensors and control systems to mitigate environmental and machine risks; risk communication methods and limitations.

Dr. Paul Stoy
Surface-atmosphere exchange; ecosystem ecology; natural resource management; water resource management; remote sensing.

Dr. Anjita Thompson
Hydrologic implications of land use change; urban hydrology and stormwater management; water quality impacts of biofuel crop production; cold regions hydrology; hydrologic modeling; sediment, nutrient and pathogen transport; polyacrylamides and biosolids for fertilizer and erosion management

Dr. Zhou Zhang
Multi-source remote sensing data fusion (e.g., hyperspectral, LiDAR, RGB); machine learning for high dimensional data analysis; UAV-based imaging platform developments for precision agriculture; crop yield prediction using remote sensing and machine learning; high-throughput image-based plant phenotyping.

AFFILIATE FACULTY
Dr. Grace Bulltail – Nelson Institute
Dr. Joao Dorea – Dept. of Animal and Dairy Sciences
Dr. Awad Hanna – Dept. of Civil Engineering
Dr. Richard Hartel – Dept. of Food Engineering
Dr. John Ralph – Dept. of Biochemistry