1. Articulate the biological context of a research question and the scientific relevance of analysis results.

2. Communicate with scientific and quantitative (computational and statistical) colleagues about data analysis goals, methods, and results.

3. Extract the statistical or computational problems from a scientific problem. Develop, characterize, and implement suitable analysis methods to answer questions from biomedical data. Evaluate the validity of analysis methods.

4. Analyze data; extract knowledge and guide decisions based on biomedical data. Organize data and software so that quantitative analyses are meaningful and reproducible.

5. Critically evaluate quantitative approaches in the scientific literature.

6. Evaluate and develop study designs and recognize limitations and potential biases in research data sets.

7. Identify the ethical and regulatory issues surrounding a research project.

8. As part of a biological, biomedical or population health investigative team, serve as the leader in the area of rigorous computational and statistical investigation.