ENVIRONMENTAL CHEMISTRY AND TECHNOLOGY, PH.D.

REQUIREMENTS

MINIMUM GRADUATE SCHOOL REQUIREMENTS

Review the Graduate School minimum academic progress and degree requirements (http://guide.wisc.edu/graduate/policiesandrequirements/text), in addition to the program requirements listed below.

MAJOR REQUIREMENTS

Mode of Instruction Definitions

Accelerated: Accelerated programs are offered at a fast pace that condenses the time to completion. Students are able to complete a program with minimal disruptions to careers and other commitments.

Evening/Weekend: Courses meet on the UW–Madison campus only in evenings and/or on weekends to accommodate typical business schedules. Students have the advantages of face-to-face courses with the flexibility to keep work and other life commitments.

Face-to-Face: Courses typically meet during weekdays on the UW-Madison Campus.

Hybrid: These programs combine face-to-face and online learning formats. Contact the program for more specific information.

Online: These programs are offered 100% online. Some programs may require an on-campus orientation or residency experience, but the courses will be facilitated in an online format.

CURRICULAR REQUIREMENTS

Requirements Detail

Minimum Credit Requirement

Minimum Residence Credit Requirement

Minimum Graduate Coursework Requirement

Overall Graduate GPA Requirement

Assessments and Examinations

Doctoral students are required to take a comprehensive preliminary exam by the end of their fifth semester of study in the Ph.D. program. A final oral exam of the doctoral dissertation is required. Deposit of the doctoral dissertation in the Graduate School is required.

Language Requirements

Doctoral Minor/Breadth Requirements

REQUIRED COURSES

Students are required to develop a plan of courses with their advisor.

All incoming EC&T students should have basic preparation in the fundamental areas of general, organic, physical and analytical chemistry. Students should also have previous coursework in the natural sciences, which can include botany, bacteriology, zoology, earth science, material science, biochemistry or engineering. Note that CIV ENGR 500 Water Chemistry or equivalent advanced course in Environmental Chemistry, is a prerequisite for many of the core EC&T courses. If these requirements have not been met prior to entering the program, this should be considered when planning the coursework.

Assessments

Doctoral students are required to take a comprehensive preliminary exam by the end of their fifth semester of study in the Ph.D. program. A final oral exam of the doctoral dissertation is required. Deposit of the doctoral dissertation in the Graduate School is required.

Language

No language requirements.

Minor/Breadth

All doctoral students are required to complete a minor.

Required Courses

Students are required to develop a plan of courses with their advisor.

All incoming EC&T students should have basic preparation in the fundamental areas of general, organic, physical and analytical chemistry. Students should also have previous coursework in the natural sciences, which can include botany, bacteriology, zoology, earth science, material science, biochemistry or engineering. Note that CIV ENGR 500 Water Chemistry or equivalent advanced course in Environmental Chemistry, is a prerequisite for many of the core EC&T courses. If these requirements have not been met prior to entering the program, this should be considered when planning the coursework.

Curricular Requirements

Requirements Detail

Minimum 51 credits

Minimum Residence 32 credits

Half of degree coursework (26 credits out of 51 total credits) must be completed graduate-level coursework; courses with the Graduate Level Coursework attribute are identified and searchable in the university’s Course Guide.

Overall 3.00 GPA required.

Students must earn a B or above in all courses counting toward degree requirements.

Core Courses

Environmental Inorganic Chemistry

Environmental Geochemistry

CIV ENGR 703

or GEOSCI 875

Advanced Topics in Geology

Environmental Organic Chemistry

Toxicants in the Environment: Sources, Distribution, Fate, & Effects

CIV ENGR/ M&ENVTOX/ SOIL SCI 631

or CIV ENGR 704

Environmental Chemical Kinetics

Air Chemistry

The Chemistry of Air Pollution

CIV ENGR/ ATM OCN 701

or CHEM 629

Atmospheric Chemical Mechanisms

Additional Coursework

Graduate Seminar - Environmental Chemistry & Technology

CIV ENGR 909

Graduate Seminar - Limnology and Marine Science Seminar

CIV ENGR/ ATM OCN/ BOTANY/ ENVIR ST/ GEOSCI/ ZOOLOGY 911

1 Students must enroll in CIV ENGR 909 Graduate Seminar - Environmental Chemistry & Technology or CIV ENGR/ATM OCN/ BOTANY/ENVIR ST/GEOSCI/ZOOLOGY 911 Limnology and Marine Science Seminar each semester. Ph.D. students should present a seminar once per academic year, either fall or spring semester.

Assessments and Examinations

Doctoral students are required to take a comprehensive preliminary exam by the end of their fifth semester of study in the Ph.D. program. A final oral exam of the doctoral dissertation is required. Deposit of the doctoral dissertation in the Graduate School is required.

Language

No language requirements.

Minor/Breadth

All doctoral students are required to complete a minor.

REQUIRED COURSES

Students are required to develop a plan of courses with their advisor.

All incoming EC&T students should have basic preparation in the fundamental areas of general, organic, physical and analytical chemistry. Students should also have previous coursework in the natural sciences, which can include botany, bacteriology, zoology, earth science, material science, biochemistry or engineering. Note that CIV ENGR 500 Water Chemistry or equivalent advanced course in Environmental Chemistry, is a prerequisite for many of the core EC&T courses. If these requirements have not been met prior to entering the program, this should be considered when planning the coursework.

Assessments

Doctoral students are required to take a comprehensive preliminary exam by the end of their fifth semester of study in the Ph.D. program. A final oral exam of the doctoral dissertation is required. Deposit of the doctoral dissertation in the Graduate School is required.

Language

No language requirements.

Minor/Breadth

All doctoral students are required to complete a minor.

Required Courses

Students are required to develop a plan of courses with their advisor.

All incoming EC&T students should have basic preparation in the fundamental areas of general, organic, physical and analytical chemistry. Students should also have previous coursework in the natural sciences, which can include botany, bacteriology, zoology, earth science, material science, biochemistry or engineering. Note that CIV ENGR 500 Water Chemistry or equivalent advanced course in Environmental Chemistry, is a prerequisite for many of the core EC&T courses. If these requirements have not been met prior to entering the program, this should be considered when planning the coursework.

Curricular Requirements

Requirements Detail

Minimum 51 credits

Minimum Residence 32 credits

Half of degree coursework (26 credits out of 51 total credits) must be completed graduate-level coursework; courses with the Graduate Level Coursework attribute are identified and searchable in the university’s Course Guide.

Overall 3.00 GPA required.

Students must earn a B or above in all courses counting toward degree requirements.

Core Courses

Environmental Inorganic Chemistry

Environmental Geochemistry

CIV ENGR 703

or GEOSCI 875

Advanced Topics in Geology

Environmental Organic Chemistry

Toxicants in the Environment: Sources, Distribution, Fate, & Effects

CIV ENGR/ M&ENVTOX/ SOIL SCI 631

or CIV ENGR 704

Environmental Chemical Kinetics

Air Chemistry

The Chemistry of Air Pollution

CIV ENGR/ ATM OCN 701

or CHEM 629

Atmospheric Chemical Mechanisms

Additional Coursework

Graduate Seminar - Environmental Chemistry & Technology

CIV ENGR 909

Graduate Seminar - Limnology and Marine Science Seminar

CIV ENGR/ ATM OCN/ BOTANY/ ENVIR ST/ GEOSCI/ ZOOLOGY 911

1 Students must enroll in CIV ENGR 909 Graduate Seminar - Environmental Chemistry & Technology or CIV ENGR/ATM OCN/ BOTANY/ENVIR ST/GEOSCI/ZOOLOGY 911 Limnology and Marine Science Seminar each semester. Ph.D. students should present a seminar once per academic year, either fall or spring semester.
substituted for this requirement with approval of the student’s academic advisor and the approval of the EC&T Academic Planning Committee.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOCHEM 501</td>
<td>Introduction to Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM 507</td>
<td>General Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM 508</td>
<td>General Biochemistry II</td>
<td>3-4</td>
</tr>
<tr>
<td>BIOCHEM 800</td>
<td>Practical Nuclear Magnetic Resonance Theory</td>
<td>2</td>
</tr>
<tr>
<td>BIOCHEM/BOTANY 621</td>
<td>Plant Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM 801</td>
<td>Biochemical Applications of Nuclear Magnetic Resonance</td>
<td>2</td>
</tr>
<tr>
<td>CBE 547</td>
<td>Introduction to Colloid and Interface Science</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 524</td>
<td>Chemical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 561</td>
<td>Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 565</td>
<td>Biophysical Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 605</td>
<td>Spectrochemical Measurements</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 613</td>
<td>Chemical Crystallography</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 624</td>
<td>Electrochemistry</td>
<td>2-3</td>
</tr>
<tr>
<td>CHEM 628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 636</td>
<td>Topics in Chemical Instrumentation: Introduction to NMR</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 637</td>
<td>Topics in Chemical Instrumentation: Advanced Methods in NMR</td>
<td>1-2</td>
</tr>
<tr>
<td>CHEM 652</td>
<td>Chemistry of Inorganic Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 653</td>
<td>Chemistry of Nanoscale Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM/BIOCHEM 665</td>
<td>Biophysical Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 668</td>
<td>Biophysical Spectroscopy</td>
<td>2-3</td>
</tr>
<tr>
<td>CHEM 725</td>
<td>Separations in Chemical Analysis</td>
<td>2-3</td>
</tr>
<tr>
<td>CHEM 738</td>
<td>Introduction to Mass Spectrometry</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 777</td>
<td>Physical Chemistry of Surfaces</td>
<td>2-3</td>
</tr>
<tr>
<td>CIV ENGR 501</td>
<td>Water Analysis-Intermediate</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENGR 609</td>
<td>Special Topics in Water Chemistry</td>
<td>1-3</td>
</tr>
<tr>
<td>CIV ENGR 700</td>
<td>Chemistry of Natural Waters</td>
<td>3</td>
</tr>
<tr>
<td>M S & E 748</td>
<td>Structural Analysis of Materials</td>
<td>3</td>
</tr>
<tr>
<td>M S & E 758</td>
<td>Transmission Electron Microscopy Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>SOIL SCI 621</td>
<td>Soil Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL SCI 875</td>
<td>Special Topics</td>
<td>1-4</td>
</tr>
</tbody>
</table>