ENERGY ANALYSIS AND POLICY, DOCTORAL MINOR

REQUIREMENTS

REQUIREMENTS

Each EAP student must complete four courses (12 credits), including an introductory course, a capstone course, and one course from each of two categories: *Energy Analysis* and *Energy Policy*. Courses in the *Energy Analysis* category involve quantitative analysis of the technical and economic factors that shape society's use of energy resources. Courses in the *Energy Policy* category involve the social, political, and environmental factors that underly decision-making around energy choices.

Some courses listed in the *Energy Analysis* category may have some overlap with the *Energy Policy* category, and vice versa. Students who wish to use a course for the opposite category that it is listed in should submit a written request to the EAP Academic Coordinator or Faculty Chair. Students should provide a course syllabus and a written justification for why the course should qualify for the other category in the context of their overall course of study, with the EAP Chair making the final decision on whether to accept the request.

The following courses are offered regularly, though other courses (with approval by the EAP faculty program committee) may fulfill one of the requirements below (see note under Other Qualifying Courses (p. 1)).

Code	Title	Credits
Required Courses		6
ENVIR ST/ PUB AFFR/ URB R PL 809	Introduction to Energy Analysis and Policy	
ENVIR ST/ PUB AFFR/ URB R PL 810	Energy Analysis and Policy Capstone	
Energy Analysis	3	
Choose one of the fo	llowing:	
A A E/ECON 371	Energy, Resources and Economics	
A A E/ENVIR ST/ POP HLTH/ PUB AFFR 881	Benefit-Cost Analysis	
AGROECOL/ ENVIR ST 724	Agroecosystems and Global Change	
ENVIR ST/ A A E/ECON/ URB R PL 671	Energy Economics	
BSE 460	Biorefining: Energy and Products from Renewable Resources	
CBE 562	Special Topics in Chemical Engineering (Topic: Energy and Sustainability)	
CIV ENGR/ G L E 421	Environmental Sustainability Engineering	

CIV ENGR 639	Special Topics in Geotechnical Engineering (Topic: Wind Energy Site/Design)
E C E 356	Electric Power Processing for Alternative Energy Systems
E C E 427	Electric Power Systems
ENVIR ST/ BSE 367	Renewable Energy Systems
M E 466	

or CIV ENGR 423Air Pollution Effects, Measurement and Control

	•
M E 469	Internal Combustion Engines
M E/CBE 567	Solar Energy Technology
N E 571	Economic and Environmental
	Aspects of Nuclear Energy

Energy Policy	3
Choose one of the following:	

	tal Credits		12
	POP HLTH/ M&ENVTOX 789	Principles of Environmental Health: A Systems Thinking Approach	
	LAW 848	Introduction to Environmental Law	
	GEOSCI/ ENVIR ST 411	Energy Resources	
	ENVIR ST/ POLI SCI/ PUB AFFR 866	Global Environmental Governance	
	ENVIR ST/ POP HLTH 502	Air Pollution and Human Health	
	ENVIR ST/ POP HLTH 471	Introduction to Environmental Health	
	ENVIR ST/ ECON/POLI SCI/ URB R PL 449	Government and Natural Resources	
	ENVIR ST/ ATM OCN 355	Introduction to Air Quality	
	ENVIR ST 349	Climate Change Governance	
ا،	noose one of the fol	llowing:	

OTHER QUALIFYING COURSES

Because the scheduling of the preceding courses is coordinated with the needs of their home departments, EAP cannot guarantee that specific courses will always be offered at specific times or rotations. Each semester, the EAP program faculty will consider other qualifying courses for the upcoming semester that fulfill one of the categories above. Once approved, the EAP Academic Coordinator will distribute a list of course offerings for the upcoming semester to students in the EAP program.

COURSE SUBSTITUTIONS

Students may propose course substitutions by contacting the Academic Coordinator or the Faculty Chair. The EAP Chair makes the final decision. Students should provide a course syllabus and a letter of endorsement from the faculty member teaching the course, preferably before the start of the course. The substitution proposal will be considered based upon the following criteria:

- 1. the extent to which the course content is devoted to energy
- 2. the rigor of methodology applied to the course material
- 3. the context of the class with respect to the student's study plan