This is a named option within the Human Ecology, M.S. (http://guide.wisc.edu/graduate/human-ecology-school-wide/human-ecology-ms/)

The M.S. Human Ecology program in the Design Studies department is geared toward generating new knowledge and/or insights into design, broadly conceived as both a process and product. The program is geared for students wanting to conduct limited scholarly research in an area of interest. The M.S. culminates in the production of an M.S. thesis that contributes to the knowledge base in the discipline of design (See the program website for more information on the non-thesis option in textile science). Some graduates of the program may continue their journey into Ph.D. programs while others may find themselves well positioned for jobs in industry. Students who aim to become or continue their design practice may be better suited in the Human Ecology: Design Studies, MFA (http://guide.wisc.edu/graduate/human-ecology-school-wide/human-ecology-mfa/) program.

The Design Studies graduate program provides opportunities for students to pursue topics in depth in design and design's relationship with human, their environments, textiles, and other material objects. The program is highly flexible, as each student works closely with his/her advisor and graduate committee to design a custom-fit curriculum that strives to support each student's goals after graduation. Due to the centrality of the student/advisor relationship, students will only be accepted if there is a close fit between the student's area of interest and a graduate faculty member who is willing to commit to serve in this mentorship relationship. In this regard, it is important for each applicant to identify a potential faculty member whom they would intend to work with at the time of the applicant's submission. At the same time, students are encouraged to collaborate with faculty from a broad range of departments across the university, including, but not limited to, Art, Art History, Civil Society and Community Studies, Computer Science, Consumer Science, Engineering, Folklore, Human Development and Family Studies, Geography, and Planning and Landscape Architecture.

AREAS OF CONCENTRATION

M.S. students can choose areas of inquiry from a variety of choices. Within each area, students are expected to build a self-directed and highly coherent curriculum in close consultation with a major faculty advisor. Topics for inquiry typically fall within the following broad areas:

Design History and/or Material Culture Studies

Material Culture Studies and Design History (DH) examines the relationships between culture, objects, and individuals. Students develop expertise and insights into the study of objects and environments, not as isolated entities, but as embedded in social, cultural, aesthetic, anthropological, geographical, and temporal contexts. Knowledge gained may result in understanding of the past, or insights into contemporary design. Students may focus on particular designers and makers, design from a particular geographical area or time period, design of textiles, design of environments or analysis of meaning and value.

Environment Design research (Environment Design, Environment-Behavior Studies)

Environmental Design Research (EDR) addresses diverse aspects of design inquiry, focusing on the complex inter-relationship between people and the built environment with an ultimate goal to create environments that are sustainable and responsive to human needs. Previous graduate topics in this area have included environment behavior, evidence-based design, building evaluation, sustainability, aging and environment, environments for special populations and children, participatory action research, and emerging technologies and applications of virtual reality.

Textile Science (Thesis and non-thesis option)

Textile Science provides in-depth understanding of the physical and chemical properties of natural and synthetic fibers and their interaction with dyes, finishes, and plasma. Students become familiar with a variety of analytical tools such as Atomic Force Microscopy (AFM), Electron Spectroscopy for Chemical Analysis (ESCA), Scanning Electron Microscopy (SEM), and Attenuated Total Reflectance, Fourier Transform Infrared Spectroscopy (ATR-FTIR).

These tracks are internal to the program and represent different pathways a student can follow to earn this degree. Track names do not appear in the Graduate School admissions application, and they will not appear on the transcript.