The Department of Materials Science and Engineering offers two distinct master of science (M.S.) degree programs:

- Materials Science and Engineering M.S., Research (http://guide.wisc.edu/graduate/materials-science-engineering/materials-science-engineering-ms/materials-science-engineering-research-ms/)
- traditional master’s program culminating in a thesis for students wishing to conduct research during their program

ABOUT MATERIALS SCIENCE AND ENGINEERING
Meeting many of the most critical challenges facing modern society requires advances in the materials that underpin new technologies. Examples include providing carbon-free and renewable energy, clean water, advanced medical treatments and devices, and sustainable materials manufacturing. New materials are also required for continued economic growth in areas as diverse as aerospace, computing, and sensors.

Materials scientists and engineers at UW–Madison work toward solutions to these problems via research in a wide variety of areas. Research areas include ceramics, computational material science; composites; corrosion; electrical, optical, magnetic materials; growth and synthesis; joining; materials for energy; metals; materials characterization and microscopy; nanomaterials; phase transformations; photonics; polymers and biomaterials; materials for nuclear energy; quantum computing; self-assembly; semiconductors; structural materials and mechanical properties; surfaces and interfaces; sustainability; thin films; and wear.

More broadly, the field of materials science and engineering is in the middle of a revolution in how we design and deploy new materials. The old way is by trial and error, which involves laboratory testing of hundreds or thousands of candidate materials, which is costly and can take decades to develop a new materials and deploy it in practical technologies. The emerging new method leverages advances in computational material science; materials databases, data science, and machine learning, and high throughput materials synthesis and characterization to achieve true design of materials. The goal is to develop and deploy new materials much more quickly and much lower cost than ever before. Materials design is a major theme of materials research on campus, organized around the areas of materials design via atomically controlled thin film systems, modular design of nanomaterials, and integrated experimental and computational materials engineering. Materials design and these themes cut across the research and application areas list above.

Materials research extends across campus, well beyond the boundaries of the Department of Materials Science and Engineering, so graduate students in materials can pursue research with a large number of affiliate faculty. Faculty emphasize the cross-cutting, interdisciplinary nature of materials research, which is also reflected by the diverse undergraduate backgrounds of the student body, many of whom do not have undergraduate degrees in materials.

Materials research benefits from major campus facilities, including the Materials Science Center, the Wisconsin Microscopy and Characterization Center, Wisconsin Center for Applied Microelectronics, and the Soft Materials Laboratory. Research is supported by major centers, including the National Science Foundation Materials Research Science and Engineering Center and the Grainger Institute for Engineering.

Materials graduates from Wisconsin find long-term success in careers in private industry, national laboratories, and academia in the US and around the world.

ADMISSIONS
Students apply to the Master of Science in Materials Science and Engineering through one of the named options:

- Materials Engineering (http://guide.wisc.edu/graduate/materials-science-engineering/materials-science-engineering-materials-science-ms/)
- Research (http://guide.wisc.edu/graduate/materials-science-engineering/materials-science-engineering-research-ms/)

FUNDING
GRADUATE SCHOOL RESOURCES
Resources to help you afford graduate study might include assistantships, fellowships, traineeships, and financial aid. Further funding information (https://grad.wisc.edu/funding/) is available from the Graduate School. Be sure to check with your program for individual policies and restrictions related to funding.

PROGRAM RESOURCES
FINANCIAL ASSISTANCE
Please note that most funding is available for Ph.D. students and there is limited resources for M.S. students. Financial assistance is not available for students enrolled in the named option in Materials Engineering (http://guide.wisc.edu/graduate/materials-science-engineering/materials-science-engineering-ms/materials-science-engineering-nanomaterials-nanoengineering-ms/).

Various types of financial assistance are available for entering graduate students, including research assistantships, teaching assistantships, fellowships and special grants. Decisions regarding financial support are made on the basis of letters of recommendation, grades, GRE general test scores, and, for research assistantships, the matching of the interests or experience of the applicant to the research programs of individual faculty members. December 15th is the deadline for receipt of fellowship applications. Foreign students are generally not eligible for university fellowships. Applications for other types of support are accepted until mid-February.

RESEARCH AND TEACHING ASSISTANTSHIPS
Research assistantships (RAs) are available in any materials science area. These appointments are under the supervision of the major professor directing the research. Students interested in research assistantships in a particular area are encouraged to contact professors
whose work is of special interest. The faculty's research interests are
given in the Department of Materials Science and Engineering faculty
section. An RA permits the most rapid progress toward a degree.
Research assistantships in materials science graduate students are
comparable to similar stipends from other institutions. Information about
stipends can be obtained from the Associate Chair of Graduate Studies,
acgs@mse.wisc.edu (http://guide.wisc.edu/graduate/materials-science-engineering/materials-science-engineering-ms/acgs@mse.wisc.edu).

Teaching assistantships involve teaching rather than research
experience. They pay approximately the same as research assistantships.
Teaching experience is especially desirable for students considering an
academic career. The Department of Materials Science and Engineering
supports a limited number of teaching assistantships, which are
allocated after admissions.

FELLOWSHIPS

Herb Fellowships in Materials Science are given out each year. The
Herb Fellowship is a one-year full-ride fellowship for incoming graduate
students. It is intended to provide especially strong students extra
flexibility and independence in formulating their graduate research
program.

Fellowships supporting graduate education are also offered on a
competitive basis by organizations such as the National Science
Foundation (http://www.nsf.gov/), the Hertz Foundation (http://
www.hertzfdn.org/), UW–Madison Graduate School (http://
www.wisc.edu/grad/), the U.S. Department of Defense and a number of
industries and foundations. Because some of these fellowships have fall
application deadlines, early application is necessary. GRE scores for the
General Test are required for fellowship applications.

OTHER FUNDING INFORMATION

If you choose to attend UW-Madison and plan to pursue funding on your
own, the following sites could be very helpful:

- Graduate School Funding Resources (https://grad.wisc.edu/
 studentfunding/prospective/)
- Graduate School Costs and Funding (https://grad.wisc.edu/
 studentfunding/currentstudents/)

REQUIREMENTS

MINIMUM GRADUATE SCHOOL REQUIREMENTS

Review the Graduate School minimum academic progress
and degree requirements (http://guide.wisc.edu/graduate/
policiesandrequirementstext), in addition to the program requirements
listed below.

MAJOR REQUIREMENTS

CURRICULAR REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>30 credits</td>
</tr>
</tbody>
</table>

Minimum Residence Credit Requirement

<table>
<thead>
<tr>
<th>Minimum Residence Credit Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 credits</td>
</tr>
</tbody>
</table>

Minimum Graduate Coursework Requirement

<table>
<thead>
<tr>
<th>Minimum Graduate Coursework Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 credits (50% of 30 credits) must be graduate-level coursework. Details can be found in the Graduate School's policy.</td>
</tr>
</tbody>
</table>

Overall Graduate GPA Requirement

<table>
<thead>
<tr>
<th>Overall Graduate GPA Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00 GPA required.</td>
</tr>
</tbody>
</table>

Other Grade Assessment Requirements

<table>
<thead>
<tr>
<th>Other Grade Assessment Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
</tr>
</tbody>
</table>

NAMED OPTIONS

A named option is a formally documented sub-major within an academic
major program. Named options appear on the transcript with degree
conferal. Students pursuing the Master of Science in Materials Science
and Engineering must select one of the following named options:

POLICIES

Students should refer to one of the named options for policy information:

- Research (http://guide.wisc.edu/graduate/materials-science-engineering/materials-science-engineering-ms/materials-science-engineering-research-ms/)
PROFESSIONAL DEVELOPMENT

GRADUATE SCHOOL RESOURCES
Take advantage of the Graduate School’s professional development resources (https://grad.wisc.edu/pd/) to build skills, thrive academically, and launch your career.

PROGRAM RESOURCES
Find information about professional development from the College of Engineering at the following webpage: https://epd.wisc.edu/.

LEARNING OUTCOMES
1. Demonstrate a strong understanding of mathematical, scientific, and engineering principles in the field.
2. Demonstrate an ability to formulate, analyze, and solve advanced engineering problems.
3. Demonstrate creative, independent problem solving skills.
4. Apply the latest scientific and technological advancements, advanced techniques, and modern engineering tools to these problems.
5. Recognize and apply principles of ethical and professional conduct.

PEOPLE

PROFESSORS
Izabela Szlufarska (Chair)
Michael S. Arnold
Susan Babcock
Chang-beom Eom
Paul Evans
Padma Gopalan
Sindo Kou
Roderic Lakes
Dane Morgan
John Perepezko
Ian Robertson
Kumar Sridharan
Donald Stone
Dan J. Thoma
Paul Voyles
Xudong Wang

ASSISTANT PROFESSORS
Dawei Feng
Jiamian Hu
Jason Ken Kawasaki
Daniel Rhodes
Jun Xiao

See also Materials Science and Engineering Faculty Directory (https://directory.engr.wisc.edu/mse/faculty/).