Statistics, Doctoral Minor

REQUIREMENTS

Please carefully read the requirements below. Requests for further information should be addressed to the Doctoral Minor Advisor in the Department of Statistics. **Note:** Candidates for an Option A Minor in Statistics must be aware of the Graduate School “Minors” policy (https://grad.wisc.edu/documents/minors/). For further information please visit the Statistics Doctoral Minor (https://stat.wisc.edu/statistics-doctoral-minor/) link.

The student should have a program of study approved by the Doctoral Minor Advisor in the Department of Statistics and the student’s major advisor, early in the student’s graduate work. The proposed program should be submitted to and approved by the minor program advisor in statistics upon, or before, the completion of 6 credits. Please see Guide Admissions/How to Get In tab for specific details on how to declare.

Students must achieve a 3.00 GPA in courses used to satisfy the minor requirement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 303</td>
<td>R for Statistics I</td>
<td>1</td>
</tr>
<tr>
<td>STAT 304</td>
<td>R for Statistics II</td>
<td>1</td>
</tr>
<tr>
<td>STAT 305</td>
<td>R for Statistics III</td>
<td>1</td>
</tr>
<tr>
<td>STAT 333</td>
<td>Applied Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 340</td>
<td>Data Science Modeling II</td>
<td>4</td>
</tr>
<tr>
<td>STAT 349</td>
<td>Introduction to Time Series</td>
<td>3</td>
</tr>
<tr>
<td>STAT 351</td>
<td>Introductory Nonparametric Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 405</td>
<td>Data Science Computing Project</td>
<td>3</td>
</tr>
<tr>
<td>STAT 436</td>
<td>Statistical Data Visualization</td>
<td>3</td>
</tr>
<tr>
<td>STAT 411</td>
<td>An Introduction to Sample Survey Theory and Methods</td>
<td>3</td>
</tr>
<tr>
<td>STAT 421</td>
<td>Applied Categorical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT/M E 424</td>
<td>Statistical Experimental Design</td>
<td>3</td>
</tr>
<tr>
<td>STAT 433</td>
<td>Data Science with R</td>
<td>3</td>
</tr>
<tr>
<td>STAT 443</td>
<td>Classification and Regression Trees</td>
<td>3</td>
</tr>
<tr>
<td>STAT 451</td>
<td>Introduction to Machine Learning and Statistical Pattern Classification</td>
<td>3</td>
</tr>
<tr>
<td>STAT 453</td>
<td>Introduction to Deep Learning and Generative Models</td>
<td>3</td>
</tr>
<tr>
<td>STAT 456</td>
<td>Applied Multivariate Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 461</td>
<td>Financial Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT/COMP SCI 471</td>
<td>Introduction to Computational Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 479</td>
<td>Special Topics in Statistics</td>
<td>1-3</td>
</tr>
<tr>
<td>STAT/B M I 542</td>
<td>Introduction to Clinical Trials I</td>
<td>3</td>
</tr>
<tr>
<td>STAT/F&W ECOL/HORT 572</td>
<td>Statistical Methods for Bioscience II</td>
<td>4</td>
</tr>
<tr>
<td>STAT 575</td>
<td>Statistical Methods for Spatial Data</td>
<td>3</td>
</tr>
<tr>
<td>STAT/B M I 620</td>
<td>Statistics in Human Genetics</td>
<td>3</td>
</tr>
<tr>
<td>STAT/B M I 641</td>
<td>Statistical Methods for Clinical Trials</td>
<td>3</td>
</tr>
<tr>
<td>STAT/B M I 642</td>
<td>Statistical Methods for Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>STAT/B M I 643</td>
<td>Clinical Trial Design, Implementation, and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 679</td>
<td>Special Topics in Statistics</td>
<td>1-3</td>
</tr>
<tr>
<td>STAT 701</td>
<td>Applied Time Series Analysis, Forecasting and Control I</td>
<td>3</td>
</tr>
<tr>
<td>STAT/B M I 727</td>
<td>Theory and Methods of Longitudinal Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 732</td>
<td>Large Sample Theory of Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>STAT/B M I 741</td>
<td>Survival Analysis Theory and Methods</td>
<td>3</td>
</tr>
<tr>
<td>STAT 760</td>
<td>Multivariate Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 761</td>
<td>Decision Trees for Multivariate Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT/B M I 768</td>
<td>Statistical Methods for Medical Image Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 771</td>
<td>Statistical Computing</td>
<td>3</td>
</tr>
<tr>
<td>STAT 772</td>
<td>Linear Randomized Algorithms for Data Science</td>
<td>3</td>
</tr>
<tr>
<td>STAT/ECON/GEN BUS 775</td>
<td>Introduction to Bayesian Decision and Control I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 780</td>
<td>Introduction to Quantum Data Science</td>
<td>3</td>
</tr>
<tr>
<td>STAT 801</td>
<td>Advanced Financial Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT/MATH 803</td>
<td>Experimental Design I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 809</td>
<td>Non Parametric Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 811</td>
<td>Sample Survey Theory and Method</td>
<td>3</td>
</tr>
<tr>
<td>STAT 834</td>
<td>Empirical Processes and Semiparametric Inference</td>
<td>1-3</td>
</tr>
<tr>
<td>STAT 840</td>
<td>Statistical Model Building and Learning</td>
<td>3</td>
</tr>
<tr>
<td>STAT 841</td>
<td>Nonparametric Statistics and Machine Learning Methods</td>
<td>3</td>
</tr>
<tr>
<td>STAT 849</td>
<td>Theory and Application of Regression and Analysis of Variance I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 850</td>
<td>Theory and Application of Regression and Analysis of Variance II</td>
<td>3</td>
</tr>
<tr>
<td>STAT 860</td>
<td>Estimation of Functions from Data</td>
<td>3</td>
</tr>
<tr>
<td>STAT/COMP SCI/E C E 861</td>
<td>Theoretical Foundations of Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>STAT/B M I 877</td>
<td>Statistical Methods for Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>STAT/ECE/MATH 888</td>
<td>Topics in Mathematical Data Science</td>
<td>1-3</td>
</tr>
<tr>
<td>STAT 992</td>
<td>Seminar</td>
<td>1-3</td>
</tr>
<tr>
<td>Probability course (at most one course):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT/MATH 309</td>
<td>Introduction to Probability and Mathematical Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 311</td>
<td>Introduction to Theory and Methods of Mathematical Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>STAT/MATH 431</td>
<td>Introduction to the Theory of Probability</td>
<td>3</td>
</tr>
<tr>
<td>STAT 609</td>
<td>Mathematical Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>STAT/MATH 709</td>
<td>Mathematical Statistics</td>
<td>4</td>
</tr>
<tr>
<td>STAT/MATH 733</td>
<td>Theory of Probability I</td>
<td>3</td>
</tr>
<tr>
<td>Statistical inference courses (at most one course):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT/MATH 310</td>
<td>Introduction to Probability and Mathematical Statistics II</td>
<td>3</td>
</tr>
<tr>
<td>STAT 312</td>
<td>Introduction to Theory and Methods of Mathematical Statistics II</td>
<td>3</td>
</tr>
<tr>
<td>STAT 610</td>
<td>Introduction to Statistical Inference</td>
<td>4</td>
</tr>
<tr>
<td>STAT/MATH 710</td>
<td>Mathematical Statistics</td>
<td>4</td>
</tr>
<tr>
<td>Other elective (at most one course):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT/COMP SCI/MATH 475</td>
<td>Introduction to Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>STAT/COMP SCI/I SY E/MATH 525</td>
<td>Linear Optimization</td>
<td>3</td>
</tr>
<tr>
<td>STAT/I SY E/MATH/OTM 632</td>
<td>Introduction to Stochastic Processes</td>
<td>3</td>
</tr>
<tr>
<td>STAT/COMP SCI/I SY E/MATH 726</td>
<td>Nonlinear Optimization I</td>
<td>3</td>
</tr>
<tr>
<td>STAT/MATH 734</td>
<td>Theory of Probability II</td>
<td>3</td>
</tr>
<tr>
<td>STAT/MATH 833</td>
<td>Topics in the Theory of Probability</td>
<td>3</td>
</tr>
</tbody>
</table>

OR another course approved by the PhD minor advisor.

Total Credits 12