Students in the wildlife ecology program learn about species ecology, habitat management, monitoring techniques, and conservation through courses that are based in the natural sciences. Wildlife ecologists study wild animals and their interactions with people. Working largely outdoors, they manage and conserve wildlife populations and their habitats, aiming to meet the complex needs of wildlife in a human-dominated world.

The Department of Wildlife Ecology was the first wildlife program in an American university. Students learn through a mix of classroom, laboratory, and field instruction. They have flexibility to customize their learning experience within one of two tracks: natural sciences and natural resources. Students can work toward substantively completing requirements for being recognized as an Associate Wildlife Biologist by The Wildlife Society, a professional organization, if they choose to.

Wildlife ecology graduates work in public resource management agencies, educational institutions, private industry, and non-governmental organizations such as the National Wildlife Federation and The Nature Conservancy. Students in the wildlife ecology major are also well prepared to pursue advanced degrees in wildlife and related fields or veterinary medicine.

Learn through hands-on, real world experiences

Wildlife ecology students learn in many field and lab courses, including classes that focus on wildlife management, reptiles, amphibians, birds, and mammals. They can also take part in a summer field course in northern Wisconsin, numerous internships, and research opportunities.

Build community and networks

Students can join the Student Chapter of the Wildlife Society and the Audubon Society, UW–Madison. Members of the Wildlife Society work with elementary school students, volunteer for numerous projects, and send a competitive team to the Quiz Bowl at the Wildlife Society annual meeting.

Customize a path of study

Students learn through a mix of classroom, laboratory, and field instruction. They have flexibility to customize their learning experience by selecting from a variety of courses in consultation with their advisor. Courses include options in the natural sciences, as well as coursework that meets educational requirements for certification as a wildlife biologist by The Wildlife Society.

Make a strong start

Students can take an introductory course that gives students an orientation to wildlife ecology and introduces them to the major and professions within the field of wildlife management and conservation.

Gain global perspective

Wildlife ecology students are encouraged to participate in a study abroad experience. The program also offers an international class focused on the extinction of species (meeting the CALS International Studies Requirement), as well as a study abroad experience in Mexico. Students can explore studying abroad as a Wildlife Ecology major utilizing the Wildlife Ecology Major Advising Page. Students work with their advisor and the CALS study abroad office to identify appropriate programs.

To declare this major, students must be admitted to UW–Madison and the College of Agricultural and Life Sciences (CALS). For information about becoming a CALS first-year or transfer student, see Entering the College.

Students who attend Student Orientation, Advising, and Registration (SOAR) with the College of Agricultural and Life Sciences have the option to declare this major at SOAR. Students may otherwise declare after they have begun their undergraduate studies. For more information, contact the advisor listed in the Contact Box for the major.

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements section of the Guide.

- **General Education**
 - Breadth—Humanities/Literature/Arts: 6 credits
 - Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
 - Breadth—Social Studies: 3 credits
 - Communication Part A & Part B *
 - Ethnic Studies *
 - Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

COLLEGE OF AGRICULTURAL AND LIFE SCIENCES REQUIREMENTS

In addition to the University General Education Requirements, all undergraduate students in CALS must satisfy a set of college and major requirements. Courses may not double count within university requirements (General Education and Breadth) or within college requirements (First-Year Seminar, International Studies, Science, and...
Capstone), but courses counted toward university requirements may also be used to satisfy a college and/or a major requirement; similarly, courses counted toward college requirements may also be used to satisfy a university and/or a major requirement.

COLLEGE REQUIREMENTS FOR ALL CALS B.S. DEGREE PROGRAMS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quality of Work: Students must maintain a minimum cumulative grade point average of 2.000 to remain in good standing and be eligible for graduation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residency: Students must complete 30 degree credits in residence at UW–Madison after earning 86 credits toward their undergraduate degree.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First Year Seminar (http://guide.wisc.edu/undergraduate/agricultural-life-sciences/#CALSFirstYearSeminarCourses)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>International Studies (http://guide.wisc.edu/undergraduate/agricultural-life-sciences/#CALSInternationalStudiesCourses)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical Science Fundamentals</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>CHEM 103 General Chemistry I or CHEM 108 Chemistry in Our World or CHEM 109 Advanced General Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biological Science</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Additional Science (Biological, Physical, or Natural)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Science Breadth (Biological, Physical, Natural, or Social)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CALS Capstone Learning Experience: included in the requirements for each CALS major (see "Major Requirements") (http://guide.wisc.edu/undergraduate/agricultural-life-sciences/#CALSCapstoneRequirement)</td>
<td></td>
</tr>
</tbody>
</table>

MAJOR REQUIREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mathematics and Statistics</td>
<td>5-6</td>
</tr>
<tr>
<td></td>
<td>Complete one of the following (or may be satisfied by placement exam):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 112 & MATH 113 Algebra and Trigonometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 114 Algebra and Trigonometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 171 Calculus with Algebra and Trigonometry I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 301 Introduction to Statistical Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAT 371 Introductory Applied Statistics for the Life Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>Complete one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 103 General Chemistry I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 108 Chemistry in Our World</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 109 Advanced General Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biology</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Complete one of the following options:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 1 (recommended):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 2:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 3:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Wildlife Ecology and Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F&W ECOL 101 Orientation to Wildlife Ecology (Counts for CALS First Year Seminar)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>F&W ECOL 306 Terrestrial Vertebrates: Life History and Ecology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>F&W ECOL 318 Principles of Wildlife Ecology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>F&W ECOL 460 General Ecology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F&W ECOL 379 Principles of Wildlife Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>F&W ECOL 561 Wildlife Management Techniques</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>F&W ECOL 655 Animal Population Dynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Plant Taxonomy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BOTANY 400 Plant Systematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vascular Flora of Wisconsin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evolution/Genetics</td>
<td>3-5</td>
</tr>
<tr>
<td></td>
<td>Complete one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZOOLOGY/ANTHRO/BOTANY 410 Evolutionary Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GENETICS 466 Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOCORE 381 & BIOCORE 382 Evolution, Ecology, and Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evolution, Ecology, and Genetics Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertebrate Taxonomy and Natural History</td>
<td>5-6</td>
</tr>
<tr>
<td></td>
<td>Complete one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZOOLOGY/AN SCI/F&W ECOL 520 Ornithology and Birds of Southern Wisconsin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F&W ECOL 521</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZOOLOGY/ENVIR ST 510 Ecology of Fishes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZOOLOGY/ENVIR ST 511 and Ecology of Fishes Lab</td>
<td></td>
</tr>
</tbody>
</table>
Major Electives
Complete 15 credits from across at least 3 different categories (see course list below):

- Physical Science
- Wildlife Resources and Technical Skills
- Anatomy/Physiology/Disease
- Conservation
- Forestry/Botany
- Ecosystem Ecology
- Policy, Administration, and Law
- Social Aspects of Natural Resources Management

Capstone
Complete one of the following:

- F&W ECOL 577 Complexity and Conservation of White-tailed Deer
- F&W ECOL 599 Wildlife Research Capstone

Total Credits 69-74

Only allowed for students who completed the rest of the Biocore curriculum listed under Biology.

There may be additional requirements for students seeking Wildlife Biologist Certification through The Wildlife Society (TWS). Please refer to TWS website for current requirements: https://wildlife.org/learn/professional-development-certification/certification-programs/

MAJOR ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 104</td>
<td>General Chemistry II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 103</td>
<td>General Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 104</td>
<td>General Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 201</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 207</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 208</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>GEOSCI 202</td>
<td>Introduction to Geologic Structures</td>
<td>4</td>
</tr>
<tr>
<td>GEOSCI 204</td>
<td>Geologic Evolution of the Earth</td>
<td>4</td>
</tr>
<tr>
<td>SOIL SCI 301</td>
<td>General Soil Science</td>
<td>3</td>
</tr>
<tr>
<td>Wildlife Resources and Technical Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVIR ST/ SOIL SCI 575</td>
<td>Assessment of Environmental Impact</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 404</td>
<td>Wildlife Damage Management</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 424</td>
<td>Wildlife Ecology Summer Field Practicum</td>
<td>2</td>
</tr>
<tr>
<td>F&W ECOL 658</td>
<td>Forest Resources Practicum</td>
<td>3</td>
</tr>
<tr>
<td>GEOG/ENVIR ST/ F&W ECOL/ G L E/GEOSCI/LAND ARC 371</td>
<td>Introduction to Environmental Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>GEOG/CIV ENGR/ ENVIR ST 377</td>
<td>An Introduction to Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>LAND ARC/ ENVIR ST 581</td>
<td>Prescribed Fire: Ecology and Implementation</td>
<td>3</td>
</tr>
<tr>
<td>Ecosystem Ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAND ARC/ ENVIR ST 361</td>
<td>Wetlands Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY/ ENVIR ST 315</td>
<td>Limnology-Conservation of Aquatic Resources</td>
<td>2</td>
</tr>
<tr>
<td>ZOOLOGY 316</td>
<td>Laboratory for Limnology-Conservation of Aquatic Resources</td>
<td>2-3</td>
</tr>
<tr>
<td>Policy, Administration, and Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVIR ST/ GEOG 337</td>
<td>Nature, Power and Society</td>
<td>3</td>
</tr>
</tbody>
</table>
ENVR ST/HISTORY/LEGAL ST 430 Law and Environment: Historical and Contemporary Perspectives 3
ENVR ST/GEOG 439 US Environmental Policy and Regulation 3-4
ENVR ST/ECON/POSI SCI/URB R PL 449 Government and Natural Resources 3-4
F&W ECOL/ENVR ST 515 Social Aspects of Natural Resource Management 3
ENVIR ST/GEOG ST 439 US Environmental Policy and Regulation 3-4
ENVIR ST/ECON/POLI SCI/URB R PL 449 Government and Natural Resources 3-4
F&W ECOL/ENVR ST 515 Natural Resources Policy 3
F&W ECOL/ENVR ST 515 Law and Environment: Historical and Contemporary Perspectives 3
AMER IND/ENVR ST 306 Indigenous Peoples and the Environment 3
AMER IND/ENVR ST/GEOG 345 Managing Nature in Native North America 3
AMER IND/GEOG 410 Critical Indigenous Ecological Knowledges 3
AMER IND/ENVR ST 341 Indigenous Environmental Communicators 3
C&E SOC/F&W ECOL/SOC 248 Environment, Natural Resources, and Society 3
C&E SOC/SOC 541 Environmental Stewardship and Social Justice 3
F&W ECOL/ZOOLOGY 335 Human/Animal Relationships: Biological and Philosophical Issues 3

UNIVERSITY DEGREE REQUIREMENTS

Total Degree To receive a bachelor’s degree from UW-Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

Residency Degree candidates are required to earn a minimum of 30 credits in residence at UW-Madison. "In residence" means on the UW-Madison campus with an undergraduate degree classification. "In residence" credit also includes UW-Madison courses offered in distance or online formats and credits earned in UW-Madison Study Abroad/Study Away programs.

Quality of Work Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES

1. Define and explain basic principles in biological sciences and major concepts in wildlife ecology including, population ecology, organismal biology, plant ecology/taxonomy, and genetics/evolution.
2. Explain and discuss principles of wildlife management including natural resource legislation, policy, and applications.
3. Explain and apply the scientific methods including designing and conducting experiments and testing hypotheses.
4. Explain and demonstrate techniques for collection of data in laboratory and field settings, keep accurate records, and analyze data to address hypotheses.
5. Demonstrate a style appropriate for communicating scientific results in written and oral form. Provide opportunity to develop these communication skills.

FOUR-YEAR PLAN

FOUR-YEAR PLAN

The four-year plan is a tool to assist you and your advisor in planning your academic career. Use it along with your DARS report and Course Search & Enroll to determine your program of study. Your program of study will likely look different from this sample four-year plan. Consult with your advisor to determine the best path for you.

SAMPLE WILDLIFE ECOLOGY FOUR-YEAR PLAN

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>F&W ECOL 101 (Counts for CALS First Year Seminar)</td>
<td>1</td>
<td>F&W ECOL 379</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY/BIOLOGY/BOTANY 151</td>
<td>3</td>
<td>MATH 113</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY 401</td>
<td>4</td>
<td>Communication Part A</td>
<td>4</td>
</tr>
<tr>
<td>ETHICS STUDIES</td>
<td>3</td>
<td>16, 15</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>F&W ECOL 561</td>
<td>3</td>
<td>ZOOLOGY/BIOLOGY/BOTANY 152</td>
<td>5</td>
</tr>
<tr>
<td>ZOOLOGY/BIOLOGY/BOTANY 151</td>
<td>5</td>
<td>BOTANY 401</td>
<td>4</td>
</tr>
<tr>
<td>Social Science</td>
<td>3</td>
<td>STAT 301 or 371</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td>16, 15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALS International Study Requirement</td>
<td>3</td>
<td>F&W ECOL 306</td>
<td>4</td>
</tr>
<tr>
<td>Evolution/Genetics Requirement</td>
<td>3</td>
<td>F&W ECOL/AN SCI/ZOOLOGY 520</td>
<td>6</td>
</tr>
<tr>
<td>& F&W ECOL/AN SCI/ZOOLOGY 521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Electives</td>
<td>6</td>
<td>16, 16</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Electives</td>
<td>6</td>
<td>F&W ECOL 655</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>Major Elective</td>
<td>3</td>
</tr>
</tbody>
</table>
Wildlife Ecology, B.S.

F&W ECOL 577 or 599 3 Electives 9

Total Credits 121

1

MATH course dependent on placement score and transfer credit evaluation.

2

BIOLOGY/BOTANY/ZOOLOGY 151 & BIOLOGY/BOTANY/ZOOLOGY 152 are recommended but students may complete BIOLOGY/ZOOLOGY 101, BIOLOGY/ZOOLOGY 102, & BIOLOGY/BOTANY 130 to satisfy the introductory biology requirement.

ADVISING AND CAREERS

ADVISING
Students are assigned an academic advisor and a faculty advisor in the department. Professional academic advisors help students plan their coursework and identify opportunities to get involved in department and campus activities. Faculty advise students on career planning and challenge students to think critically.

CAREER OPPORTUNITIES
Undergraduates in wildlife ecology prepare for a variety of careers. They can become wildlife biologists, habitat restoration technicians, attorneys, wildlife enforcement officers, researchers, and more. Students are also well prepared to pursue advanced degrees in wildlife and related fields, including veterinary medicine. Graduates of the program work for many organizations, such as state departments of natural resources, the U.S. Fish and Wildlife Service, the Chicago Zoological Society, and The Nature Conservancy.

PEOPLE

PROFESSORS
Bowe, Scott
Burivalova, Zuzana
Chen, Min
Drake, David
Karasov, William
Hua, Jessica
Kruger, Eric (chair)
Ozdogan, Mutlu
Pauli, Jonathan
Peery, M. Zach
Pidgeon, Anna
Radeloff, Volker
Rickenbach, Mark
Rissman, Adena
Townsend, Philip
Van Deelen, Timothy
Zuckerberg, Benjamin

AFFILIATED FACULTY
Balster, Nick (Soil Science)
Marin-Spiotta, Erika (Geography)

INSTRUCTORS AND TEACHING FACULTY
Berkelman, James
Nack, Jamie
Meindl, George

ADVISOR
Hochmuth, Allee

For faculty and staff profiles, visit https://forestandwildlifeecology.wisc.edu/people/faculty-and-staff/

WISCONSIN EXPERIENCE

Internships
Many wildlife ecology students include internships and professional work experiences in their studies. Students are encouraged to talk to their advisor about internship possibilities. See the Internship & Job Resources (https://forestandwildlifeecology.wisc.edu/academics/undergraduate-programs/internship-job-resources/) page for more information.

Research experience
Wildlife ecology undergraduates are encouraged to get involved in field- or lab-based research with a professor. In their research experiences, students gain skills in a variety of areas including measuring habitats, reviewing literature, identifying species, deploying wildlife cameras, and more.

Student organizations
Students can join the Student Chapter of the Wildlife Society and the Audubon Society, UW–Madison. Members of the Wildlife Society can work with elementary school students and volunteer for numerous projects.

Competitive teams
Wildlife ecology undergraduates can join a team that competes at the Quiz Bowl at the Wildlife Society annual meeting.

Global engagement
Wildlife ecology students are encouraged to participate in a study abroad experience. The program offers an experience in Mexico focused on wildlife ecology, as well as an international course focused on the extinction of species that meets the CALS International Studies requirement. Students can find more information about study abroad on the CALS study abroad advising page (https://cals.wisc.edu/academics/undergraduate-students/international-programs/study-abroad-advising/).

Community engagement and volunteering
The Student Chapter of the Wildlife Society organizes several volunteer activities, including spring and summer frog surveys, summer fawn searches, and roadside clean-up. Students also have opportunities to work with elementary school students and give presentations about wildlife.

On campus, the Morgridge Center for Public Service (https://morgridge.wisc.edu/) provides resources to help students connect with volunteer opportunities based on their interests and goals.
RESOURCES AND SCHOLARSHIPS

Department scholarships are available to wildlife ecology students and fellowships are available to support research work with a professor. Students across the College of Agricultural and Life Sciences receive more than $1.25 million in scholarships annually. Learn more about college scholarships here (https://cals.wisc.edu/academics/undergraduate-students/financing-your-education/cals-scholarships/).