NUTRITIONAL SCIENCES, B.S.

Nutritional sciences is the study of the biochemical and physiological basis of how diet impacts health and disease. Students explore a variety of biological concepts including biochemistry, genetics, microbiology, kinesiology, community nutrition, and epidemiology to understand how nutrients in food affect the body.

Students can tailor their studies by selecting from more than 20 courses covering a wide variety of topics, including, microbiology, genetics, obesity, metabolism, kinesiology and sports nutrition, as well as ethics of public health, global health, community nutrition, and cultural aspects of food. Many students supplement their studies outside of the classroom by contributing to research in a university lab or volunteering in the community.

With an emphasis on human health, the program prepares students for health and research careers in a variety of settings, including healthcare, education, corporate wellness, sports nutrition, government agencies, food companies, or pharmaceuticals.

LEARN THROUGH HANDS-ON, REAL WORLD EXPERIENCE

In the classroom, students apply what they learn to real-world cases and approach nutritional health as they would in a clinical setting. Some courses also include field experiences or community-based learning experiences.

Because of the emphasis on biological sciences, many students choose to join a professor's research lab and may earn credit for their work within the lab. Students also have opportunities for community service internships under the guidance of a faculty member.

BUILD COMMUNITY AND NETWORKS

The Dietetics and Nutrition Club (DNC) (https://nutrisci.wisc.edu/undergraduate/dietetics-and-nutrition-club/) is a registered student organization open to undergraduate and graduate students. The club offers a variety of opportunities for members to engage in networking events, participate in volunteer and community outreach opportunities, and to learn about the field of nutrition and the dietetics profession.

CUSTOMIZE A PATH OF STUDY

With nearly 20 elective courses available in the third and fourth years of the program, students can plan their coursework to best fit their professional goals and explore scientific principles of greatest interest to them.

Students may participate in the college's Research in Honors program (https://cals.wisc.edu/academics/undergraduate-students/outside-the-classroom/honors-program/honors-in-research/). Many students enhance their major by participating in a certificate program such as the Biology Core Curriculum Honors (Biocore) Certificate (https://guide.wisc.edu/undergraduate/letters-science/biology-core-curriculum/biology-core-curriculum-honors-certificate/).

MAKE A STRONG START

A popular First Year Interest Group (FIG) focuses on issues of food and identity and covers current events, nutrition policies related to chronic disease, and community-led programs to improve health outcomes.

GAIN GLOBAL EXPERIENCE

Several courses emphasize global health and world nutrition. Many students pair a major in Nutritional Sciences with the Global Health Certificate, which includes a field experience/internship focused on a health-related topic of global importance. Students can explore studying abroad as a Nutritional Sciences major by utilizing the Nutritional Sciences Major Advising Page. Students work with their advisor and the CALS study abroad office to identify appropriate programs.

HOW TO GET IN

To declare this major, students must be admitted to UW–Madison and the College of Agricultural and Life Sciences (CALS). For information about becoming a CALS first-year or transfer student, see Entering the College (http://guide.wisc.edu/undergraduate/agricultural-life-sciences/#enteringthecollegetext).

Students who attend Student Orientation, Advising, and Registration (SOAR) with the College of Agricultural and Life Sciences have the option to declare this major at SOAR. Students may otherwise declare after they have begun their undergraduate studies. For more information, contact the advisor listed in the Contact Box for the major.

REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatetestudytext) section of the Guide.

- General Education
  - Breadth—Humanities/Literature/Arts: 6 credits
  - Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
  - Breadth—Social Studies: 3 credits
  - Communication Part A & Part B *
  - Ethnic Studies *
  - Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.
COLLEGE OF AGRICULTURAL AND LIFE SCIENCES REQUIREMENTS

In addition to the University General Education Requirements, all undergraduate students in CALS must satisfy a set of college and major requirements. Courses may not double count within university requirements (General Education and Breadth) or within college requirements (First-Year Seminar, International Studies, Science, and Capstone), but courses counted toward university requirements may also be used to satisfy a college and/or a major requirement; similarly, courses counted toward college requirements may also be used to satisfy a university and/or a major requirement.

COLLEGE REQUIREMENTS FOR ALL CALS B.S. DEGREE PROGRAMS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quality of Work: Students must maintain a minimum cumulative grade point average of 2.000 to remain in good standing and be eligible for graduation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residency: Students must complete 30 degree credits in residence at UW–Madison after earning 86 credits toward their undergraduate degree.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First Year Seminar (<a href="http://guide.wisc.edu/undergraduate/agricultural-life-sciences/#CALSFirstYearSeminarCourses">http://guide.wisc.edu/undergraduate/agricultural-life-sciences/#CALSFirstYearSeminarCourses</a>)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>International Studies (<a href="http://guide.wisc.edu/undergraduate/agricultural-life-sciences/#CALSInternationalStudiesCourses">http://guide.wisc.edu/undergraduate/agricultural-life-sciences/#CALSInternationalStudiesCourses</a>)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical Science Fundamentals</td>
<td>4-5</td>
</tr>
<tr>
<td>CHEM 103</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>or CHEM 108</td>
<td>Chemistry in Our World</td>
<td>4</td>
</tr>
<tr>
<td>or CHEM 109</td>
<td>Advanced General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Biological Science</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Additional Science (Biological, Physical, or Natural)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Science Breadth (Biological, Physical, Natural, or Social)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CALS Capstone Learning Experience: included in the requirements for each CALS major (see &quot;Major Requirements&quot;) (<a href="http://guide.wisc.edu/undergraduate/agricultural-life-sciences/#CALSCapstoneRequirement">http://guide.wisc.edu/undergraduate/agricultural-life-sciences/#CALSCapstoneRequirement</a>)</td>
<td></td>
</tr>
</tbody>
</table>

MAJOR REQUIREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mathematics and Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following (or may be satisfied by placement exam):</td>
<td>5-6</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Algebra</td>
<td></td>
</tr>
<tr>
<td>&amp; MATH 113</td>
<td>and Trigonometry</td>
<td></td>
</tr>
<tr>
<td>MATH 114</td>
<td>Algebra and Trigonometry</td>
<td></td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus with Algebra and Trigonometry</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3-5</td>
</tr>
<tr>
<td>STAT 301</td>
<td>Introduction to Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>STAT 371</td>
<td>Introductory Applied Statistics for the Life Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>5-9</td>
</tr>
<tr>
<td>CHEM 103 &amp; CHEM 104</td>
<td>General Chemistry I and General Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 343</td>
<td>Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 344</td>
<td>Introductory Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 345</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Introductory Biology</td>
<td>10</td>
</tr>
<tr>
<td>BOTANY/ BIOLOGY 130</td>
<td>General Botany</td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY/ BIOLOGY 101</td>
<td>Animal Biology</td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY/ BIOLOGY 102</td>
<td>Animal Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 2:</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/ BOTANY/ ZOOLOGY 151</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/ BOTANY/ ZOOLOGY 152</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 3:</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 381</td>
<td>Evolution, Ecology, and Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 382</td>
<td>Evolution, Ecology, and Genetics Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 383</td>
<td>Cellular Biology</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 384</td>
<td>Cellular Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nutritional Sciences Biology</td>
<td>8-13</td>
</tr>
<tr>
<td>ANAT&amp;PHY 335</td>
<td>Physiology</td>
<td></td>
</tr>
<tr>
<td>GENETICS 466</td>
<td>Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>And select one of the following:</td>
<td>2</td>
</tr>
<tr>
<td>MICROBIO 101 &amp; MICROBIO 102</td>
<td>General Microbiology and General Microbiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>MICROBIO 303 &amp; MICROBIO 304</td>
<td>Biology of Microorganisms and Biology of Microorganisms Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 2:</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 485</td>
<td>Principles of Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 486</td>
<td>Principles of Physiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 587</td>
<td>Biological Interactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>8-10</td>
</tr>
<tr>
<td>PHYSICS 103 &amp; PHYSICS 104</td>
<td>General Physics and General Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 201 &amp; PHYSICS 202</td>
<td>General Physics and General Physics</td>
<td></td>
</tr>
</tbody>
</table>
Nutritional Sciences, B.S.

PHYSICS 207 & PHYSICS 208  General Physics and General Physics

Core
NUTR SCI/AN SCI/DY SCI 311  Comparative Animal Nutrition 3
or NUTR SCI 332  Human Nutritional Needs 3
NUTR SCI 431  Nutrition in the Life Span 3
BIOCHEM/NUTR SCI 510  Nutritional Biochemistry and Metabolism 3

Select one of the following:  3-7
BIOCHEM 501  Introduction to Biochemistry
BIOCHEM 507 & BIOCHEM 508  General Biochemistry I and General Biochemistry II

Electives within the Major
Select 6 credits from the following:  6
A A E/AGRONOMY/ NUTR SCI 350  World Hunger and Malnutrition
ANAT&PHY 337  Human Anatomy
ANAT&PHY 338  Human Anatomy Laboratory
ANTHRO 365  Medical Anthropology
BIOCHEM 550  Principles of Human Disease and Biotechnology
BIOCHEM/ M M & I 575  Biology of Viruses
BIOCHEM/ NUTR SCI 645  Molecular Control of Metabolism and Metabolic Disease
C&E SOC/SOC 533  Public Health in Rural & Urban Communities
CHEM 311  Chemistry Across the Periodic Table
CHEM 327  Fundamentals of Analytical Science
CHEM 329  Fundamentals of Analytical Science
DY SCI 378  Lactation Physiology
FOOD SCI/AN SCI 321  Food Laws and Regulations
FOOD SCI/MICROBIO 325  Food Microbiology
GENETICS 545  Genetics Laboratory
HORT/ AGRONY  338  Plant Breeding and Biotechnology
HORT/ AGRONY/BOTANY 339  Plant Biotechnology: Principles and Techniques I
HORT/ AGRONY 360  Genetically Modified Crops: Science, Regulation & Controversy
MED HIST/PHILOS 515  Public Health Ethics
MED HIST/PHILOS 558  Ethical Issues in Health Care
M M & I/PATH-BIO 528  Immunology
NUTR SCI 375  Special Topics
NUTR SCI 377  Cultural Aspects of Food and Nutrition

NUTR SCI/INTER-AG 421  Global Health Field Experience
NUTR SCI/KINES 525  Nutrition in Physical Activity and Health
NUTR SCI 500  Undergraduate Capstone Seminar Laboratory
NUTR SCI 540  Community Nutrition and Health Equity
NUTR SCI/BIOCHEM 619  Advanced Nutrition: Intermediate Metabolism of Macronutrients
NUTR SCI/POP HLTH 621  Introduction to Nutritional Epidemiology
NUTR SCI 623  Advanced Nutrition: Minerals
NUTR SCI 625  Advanced Nutrition: Obesity and Diabetes
NUTR SCI/AN SCI 626  Experimental Diet Design
NUTR SCI 627  Advanced Nutrition: Vitamins
NUTR SCI 631  Clinical Nutrition I
NUTR SCI 681  Senior Honors Thesis
NUTR SCI 682  Senior Honors Thesis
NUTR SCI 691  Senior Thesis-Nutrition
NUTR SCI 692  Senior Thesis
NUTR SCI 699  Special Problems
ONCOLOGY 401  Introduction to Experimental Oncology
PATH 404  Pathophysiologic Principles of Human Diseases
POP HLTH 370  Introduction to Public Health: Local to Global Perspectives
ZOOLOGY 470  Introduction to Animal Development
ZOOLOGY 570  Cell Biology

Capstone
Select one of the following:  1-8
NUTR SCI 500  Undergraduate Capstone Seminar Laboratory
NUTR SCI 681 & NUTR SCI 682  Senior Honors Thesis
NUTR SCI 691 & NUTR SCI 692  Senior Thesis-Nutrition & Senior Thesis
NUTR SCI 699  Special Problems

Total Credits  66-91

1  If MATH 171 Calculus with Algebra and Trigonometry I is taken, students must take MATH 217 Calculus with Algebra and Trigonometry II.
2  Consult advisor about combining MICROBIO 303 with MICROBIO 102.
3  If the Biocore sequence is taken to fulfill the first biology requirement, it must be taken to fulfill the second biology requirement.
4  These courses are taught primarily to graduate students. Permission to enroll from instructor may be required.
Note that for NUTR SCI 681/NUTR SCI 682 (Senior Honors Thesis) and NUTR SCI 691/NUTR SCI 692 (Senior Thesis), both courses in the sequence must be completed in order to earn a grade.

May count up to 6 credits of NUTR SCI 699 Special Problems towards the electives requirement.

Consult advisor regarding the possibility of completing NUTR SCI 699 Special Problems for capstone.

RECOMMENDED NUTRITIONAL SCIENCE ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHRO 365</td>
<td>Medical Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM 550</td>
<td>Principles of Human Disease and Biotechnology</td>
<td>2</td>
</tr>
<tr>
<td>BIOCHEM/M &amp; I 575</td>
<td>Biology of Viruses</td>
<td>2</td>
</tr>
<tr>
<td>BIOCHEM/NUTR SCI 645</td>
<td>Molecular Control of Metabolism and Metabolic Disease</td>
<td>3</td>
</tr>
<tr>
<td>C&amp; SOC/SOC 533</td>
<td>Public Health in Rural &amp; Urban Communities</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 311</td>
<td>Chemistry Across the Periodic Table</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 327</td>
<td>Fundamentals of Analytical Science</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 329</td>
<td>Fundamentals of Analytical Science</td>
<td>4</td>
</tr>
<tr>
<td>AN SCI/FOOD SCI 305</td>
<td>Introduction to Meat Science and Technology</td>
<td>4</td>
</tr>
<tr>
<td>FOOD SCI/AN SCI 321</td>
<td>Food Laws and Regulations</td>
<td>1</td>
</tr>
<tr>
<td>FOOD SCI/MICROBIO 325</td>
<td>Food Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>GENETICS 545</td>
<td>Genetics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>HORT/AGRONOMY 338</td>
<td>Plant Breeding and Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>HORT/AGRONOMY 360</td>
<td>Genetically Modified Crops: Science, Regulation &amp; Controversy</td>
<td>2</td>
</tr>
<tr>
<td>ANAT&amp;PHY 337</td>
<td>Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>ANAT&amp;PHY 338</td>
<td>Human Anatomy Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MED HIST/PHILOS 515</td>
<td>Public Health Ethics</td>
<td>3</td>
</tr>
<tr>
<td>MED HIST/PHILOS 558</td>
<td>Ethical Issues in Health Care</td>
<td>3</td>
</tr>
<tr>
<td>M M &amp; I/PATH-BIO 528</td>
<td>Immunology</td>
<td>3</td>
</tr>
<tr>
<td>NUTR SCI/A A E/AGRONOMY 350</td>
<td>World Hunger and Malnutrition</td>
<td>3</td>
</tr>
<tr>
<td>NUTR SCI 375</td>
<td>Special Topics</td>
<td>1-4</td>
</tr>
<tr>
<td>NUTR SCI 377</td>
<td>Cultural Aspects of Food and Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NUTR SCI/INTER-AG 421</td>
<td>Global Health Field Experience</td>
<td>1-4</td>
</tr>
<tr>
<td>NUTR SCI 500</td>
<td>Undergraduate Capstone Seminar Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

HONORS IN THE MAJOR

Students admitted to the university and to the College of Agricultural and Life Sciences are invited to apply to be considered for admission to the CALS Honors Program.

Admission Criteria for New First-Year Students:
- Complete program application including essay questions

Admission Criteria for Transfer and Continuing UW-Madison Students:
- UW-Madison cumulative GPA of at least 3.25
- Complete program application including essay questions

HOW TO APPLY

The application is available on the CALS Honors Program website (https://cals.wisc.edu/academics/undergraduate/current-students/honors-program/). Applications are accepted at any time.

New first-year students with accepted applications will automatically be enrolled in Honors in Research. It is possible to switch to Honors in the Major in the student’s first semester on campus after receiving approval from the advisor for that major. Transfer and continuing students may apply directly to Honors in Research or Honors in the Major (after approval from the major advisor).

REQUIREMENTS

All CALS Honors programs have the following requirements:
- Earn at least a cumulative 3.25 GPA at UW-Madison (some programs have higher requirements)
- Complete the program-specific requirements listed below
- Submit completed thesis documentation to CALS Academic Affairs

To earn Honors in the Major, students are required to take at least 20 honors credits. In addition, students must take NUTR SCI 681 Senior Honors Thesis and NUTR SCI 682 Senior Honors Thesis when completing their thesis project; please see the Honors Program page (https://cals.wisc.edu/academics/undergraduate/current-students/honors-program/) for more information.
UNIVERSITY DEGREE REQUIREMENTS

Total Degree
To receive a bachelor’s degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

Residency
Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. “In residence” means on the UW–Madison campus with an undergraduate degree classification. “In residence” credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.

Quality of Work
Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES

1. Obtains and can articulate specialized knowledge in the field of nutritional sciences and dietetics along with an education broad enough to meet the challenges of future careers and opportunities.
2. Obtains and can articulate foundational knowledge in areas relevant to the field of nutrition and dietetics.
3. Communicates complex ideas in a clear and understandable manner through both written and oral presentations.
4. Demonstrates quantitative literacy in math and statistics relevant to nutritional sciences and dietetics.
5. Demonstrates the ability to think critically and creatively, to synthesize, analyze, and integrate ideas for decision making and problem solving.
6. Develops the skills for life-long learning and is capable of locating, interpreting, and critically evaluating professional literature and current research.
7. Develops a global perspective and an appreciation for the interdependencies among individuals and their workplaces, communities, environments, and world; and an understanding of the interrelationships between science and society.
8. Develops a respect for truth, a tolerance for diverse views, and a strong sense of personal and professional ethics.

FOUR-YEAR PLAN

SAMPLE NUTRITIONAL SCIENCES FOUR-YEAR PLAN

First Year
Fall
CHEM 103 or 109
MATH 113 (if needed) 1
COMM A

Credits
4-5
3
3

Spring
CHEM 104
Social Sciences
Ethnic Studies

Credits
5
3-4
3

CALS First Year Seminar 1 Elective

Electives
3-4

Second Year
Fall
CHEM 343
STAT 301 or 371
BIOLOGY/BOTANY/ ZOOLOGY 151

Credits
3
3
5

Spring
NUTR SCI 332
CHEM 345
BIOLOGY/BOTANY/ ZOOLOGY 152

Credits
3
3
5

CALS International Studies

Credits
3

Elective

Credits
3

Third Year
Fall
BIOCHEM 501 or 507 (if taking BIOCHEM 507, take BIOCHEM 508 in Spring)
CHEM 344
ANATPHY 335

Credits
3
2
5

Spring
NUTR SCI 431
MICROBIO 101 or 303
MICROBIO 102 or 304

Credits
3
3
2

Humanities

Credits
3

Elective

Credits
5

Elective

Credits
3

Fourth Year
Fall
GENETICS 466
NUTR SCI/BIOCHEM 510
PHYSICS 103

Credits
4
3
4

Spring
NUTR SCI 500
PHYSICS 104
Nutritional Sciences Electives 1

Credits
1
4
3-6

Electives

Credits
6

TOTAL CREDITS 116-125

Students must complete at least 120 total credits to be eligible for graduation.

1 In order to take CHEM 103/CHEM 104 or CHEM 109, students must have a suitable math placement score or completion of MATH 112, MATH 114, MATH 171, or equivalent.

2 MATH course dependent on placement score and transfer credit evaluation.

3 BIOLOGY/BOTANY/ZOOLOGY 151 & BIOLOGY/BOTANY/ZOOLOGY 152 fulfills the COMM B requirement.

4 BIOCORE 381/BIOCORE 382, BIOCORE 383/BIOCORE 384, BIOCORE 485/BIOCORE 486, BIOCORE 587 also accepted.

5 Select 6 credits from major elective options.
ADVISING AND CAREERS

ADVISING
Students are assigned a professional advisor who assists them with building their personalized Wisconsin Experience—including a strong curriculum to match student interests—and provides advising on career paths including graduate school or pursuing advanced degrees in the health sciences.

Professors provide mentorship to students in the program through work on faculty-led research, including learning research paper- and grant-writing skills, communicating about scientific concepts, and presenting research results to different audiences.

CAREER OPPORTUNITIES
Graduates of the program are working as physicians, scientists, physician assistants, nutrition product developers, foodservice directors, nutrition educators, wellness directors, and professors; and have a wide-range of employers including hospitals, clinics, nursing homes, school districts, food companies, universities, grocery stores, and non-profit organizations.

Alumni are recognized for their skills in healthcare, leadership, clinical research, communication, critical thinking, and problem solving.

PEOPLE
PROFESSORS
Dave Eide (Department Chair)
Richard Eisenstein
Jing Fan
Guy Groblewski
Adam Kuchnia (Director of Didactic Program in Dietetics)
HuiChuan Lai
Denise Ney
James Ntambi
Beth Olson
Brian Parks
Joseph Pierre
Sherry Tanumihardjo
Eric Yen

INSTRUCTORS
Erika Anna
Amber Haroldson
Tara LaRowe (Coordinator of Didactic Program in Dietetics)
Makayla Schuchardt
Yirong Wang

ACADEMIC ADVISORS
Sarah Golla, MSW
Mona Mogahed, MPS

WISCONSIN EXPERIENCE
RESEARCH EXPERIENCE
Undergraduate students have the opportunity to take for-credit and not-for-credit hours in labs (https://nutrisci.wisc.edu/undergraduate/student-research/) to participate in research and learn additional lab skills.

Faculty-led research programs inform the scientific understanding of nutrition’s role in health. Students can work with internationally recognized researchers who study metabolism, genetics, genomics, physiology, and nutritional management of diseases including phenylketonuria (PKU), cystic fibrosis, and diabetes.

GLOBAL ENGAGEMENT
Faculty and students in the program have many connections with global activities. The UW Mobile Clinic and Health Care in Uganda (https://studyabroad.wisc.edu/program/?programId=532) study abroad program provides students an opportunity to visit Uganda and learn about nutrition and public health. The Village Health Project (https://www.villagehealthproject.org/) student organization grew out of students traveling to Uganda on UW–Madison programs and supports ongoing public health projects in the region.

STUDENT ORGANIZATION
The Dietetics and Nutrition Club (DNC) (https://nutrisci.wisc.edu/undergraduate/dietetics-and-nutrition-club/), open to undergraduate and graduate students, hosts biweekly evening meetings featuring speakers on many topics related to nutrition. The group also assists students in finding volunteer and job opportunities in the field of nutrition.

VOLUNTEER ACTIVITY
Students volunteer through many different programs in the community. Examples include:

• Volunteering at UW Hospitals and Clinics or other local hospitals to gain experience in patient care
• Joining the student organization Slow Food UW, a group that hosts dinners in the Madison community
• Addressing food insecurity through student groups including Food Justice Collective, Campus Food Shed, UW Frozen Meals program, Open Seat food pantry, Food Recovery Network-Madison Chapter, F.H. King: Students for Sustainable Agriculture; and Madison-area food pantries such as Madison Community Fridges

The Dietetics and Nutrition Club also offers volunteer opportunities.

INTERNSHIP
Students may obtain academic credit along with community-based engagement by creating their own internship under the supervision of a faculty member.

RESOURCES AND SCHOLARSHIPS
The Department of Nutritional Sciences awards tens of thousands of dollars in scholarship funds (https://nutrisci.wisc.edu/undergraduate/scholarships/) for students each year and Nutritional Sciences students are also eligible for scholarships in the College of Agricultural and Life Sciences.

Students in the College of Agricultural and Life Sciences receive more than $1.25 million in scholarships annually. Learn more about college scholarships. (https://cals.wisc.edu/academics/undergraduate-students/financing-your-education/cals-scholarships/)