Chemical engineers exploit advances in chemistry and biology to create new products, design chemical processes, develop energy resources, and protect the environment. Students receive a thorough grounding in chemistry, biology, mathematics and physics. With this broad scientific training, chemical engineers work effectively on a diverse set of problems involving chemical, physical, and biological phenomena. For example, chemical engineers develop environmentally benign and safe processes to make the chemical products that people depend on. They work in research and development laboratories, creating polymeric materials with improved performance and durability. They work in manufacturing, making vaccines and antibiotics. They invent new ways to keep our food and water supplies safe. Opportunities for chemical engineers span numerous industries: pharmaceuticals, polymers, energy, food, consumer products, biotechnology, and electronic and optical materials. Graduates understand the needs of society, and use their training in science and technology to meet those needs.

The chemical engineering program develops the student’s capability for invention and analysis of chemical processes and products. Students in the program take several classes in chemistry, along with courses in physics, mathematics, and biology. The curriculum provides a rigorous education in the fundamental chemical engineering sciences of thermodynamics, transport phenomena, and kinetics, as well as more applied areas such as materials science, biochemical engineering, or chemical process design. Because engineers must be skilled communicators, the curriculum places considerable emphasis on technical report writing, team projects, and formal and informal oral presentation. In addition, students broaden their understanding of people and society by taking several courses in the humanities and social sciences.

The B.S. program in chemical engineering leads to a wide variety of careers. Graduates are prepared for professional lives in industry, government, engineering design, or consulting companies. Graduates with a more practical, hands-on approach are employed in manufacturing support, process development, product development, design, construction, or technical sales. They rapidly advance to responsible technical supervisory and management positions. Graduates with a research interest work to improve understanding of scientific engineering principles, and to apply these principles to solve emerging problems. Entrepreneurial graduates work in smaller enterprises, or create their own businesses, developing the major industries of tomorrow. An undergraduate degree in chemical engineering provides a strong basis for advanced study in graduate school, or for further training in medicine, law, or policy.

CHEMICAL ENGINEERING PROGRAM EDUCATIONAL OBJECTIVES

The department recognizes that our graduates will choose to use the knowledge and skills they have acquired during their undergraduate years to pursue a wide variety of career and life goals and we encourage this diversity of paths.

Whatever path graduates choose, be it a job, graduate school, or volunteer service, be it in engineering or another field, within the next 5 years and beyond, we have for our graduates the following objectives:

1. That they will exhibit strong skills in problem-solving, leadership, teamwork, and communication;
2. That they will use these skills to contribute to their communities;
3. That they will make thoughtful, well-informed career choices; and
4. That they will demonstrate a continuing commitment to and interest in education (their own and others’).

ADMISSION TO THE COLLEGE AS A FRESHMAN

Students applying to UW–Madison (https://www.admissions.wisc.edu/apply) need to indicate an engineering major (https://www.engr.wisc.edu/academics/undergraduate-academics/choosing-a-major) as their first choice in order to be considered for direct admission to the College of Engineering. Direct admission to a major means students will start in the program of their choice in the College of Engineering and will need to meet progression requirements (https://www.engr.wisc.edu/academics/student-services/academic-advising/first-year-undergraduate-students/progression-requirements) at the end of the first year to guarantee advancement in that program.

CROSS-CAMPUS TRANSFER TO ENGINEERING

UW–Madison students in other schools and colleges on campus must meet the course and credit requirements for admission to engineering degree granting classifications specified in the general college requirements (https://www.engr.wisc.edu/academics/student-services/academic-advising/cross-campus-students). The requirements are the minimum for admission consideration. Cross-campus admission is competitive and selective, and the grade point average expectations may increase as demand trends change. The student’s overall academic record at UW–Madison is also considered. Students apply to their intended engineering program by submitting the online application by stated deadlines for spring and fall. The College of Engineering offers an online information tutorial and drop-in advising (https://www.engr.wisc.edu/academics/student-services/academic-advising/cross-campus-students) for students to learn about the cross-campus transfer process.

OFF-CAMPUS TRANSFER TO ENGINEERING

With careful planning, students at other accredited institutions can transfer coursework that will apply toward engineering degree requirements at UW–Madison. Off-campus transfer applicants are considered for direct admission to the College of Engineering by applying to the Office of Admissions with an engineering major listed as their first choice. Those who are admitted to their intended engineering program must meet progression requirements (https://www.engr.wisc.edu/academics/student-services/academic-advising/transfer-students) at the point of transfer or within their first two semesters at UW–Madison to guarantee advancement in that program. A minimum of 30 credits in residence in the College of Engineering is required after transferring, and all students must meet all requirements for their major in the college. Transfer admission to the College of Engineering is competitive and selective, and students who have earned more than 80 transferable semester credits at the time of application are not eligible to apply.
The College of Engineering has dual degree programs with select four-year UW System campuses. Eligible dual degree applicants are not subject to the 80 credit limit.

Off-campus transfer students are encouraged to discuss their interests, academic background, and admission options with the Transfer Coordinator in the College of Engineering: ugtransfer@engr.wisc.edu or 608-262-2473.

SECOND BACHELOR'S DEGREE
The College of Engineering does not accept second undergraduate degree applications. Second degree students might explore the Biological Systems Engineering program at UW–Madison, an undergraduate engineering degree elsewhere, or a graduate program in the College of Engineering.

REQUIREMENTS
UNIVERSITY GENERAL EDUCATION REQUIREMENTS
All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements section of the Guide.

General Education
- Breadth—Humanities/Literature/Arts: 6 credits
- Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth—Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

SUMMARY OF REQUIREMENTS
The following curriculum applies to students admitted to the chemical engineering degree program.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Mathematics</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Life Science</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Engineering Requirement</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Professional Breadth</td>
<td>6</td>
</tr>
</tbody>
</table>

Communication Skills 6
Liberal Studies Requirement 16
Total Credits 132

MATHEMATICS REQUIREMENT
Transfer students must have equivalent math courses to meet the calculus requirement with a minimum of 12 credits to cover the three-course basic math sequence. Any deficiency in total math credits must be made up with electives in science or engineering.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Calculus and Analytic Geometry 1</td>
<td>5</td>
</tr>
<tr>
<td>or MATH 217</td>
<td>Calculus with Algebra and Trigonometry II</td>
<td></td>
</tr>
<tr>
<td>or MATH 275</td>
<td>Topics in Calculus I</td>
<td></td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus and Analytic Geometry 2</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 276</td>
<td>Topics in Calculus II</td>
<td></td>
</tr>
<tr>
<td>MATH 234</td>
<td>Calculus—Functions of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>MATH 320</td>
<td>Linear Algebra and Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 319</td>
<td>Techniques in Ordinary Differential Equations</td>
<td></td>
</tr>
<tr>
<td>STAT 324</td>
<td>Introductory Applied Statistics for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 19

PHYSICS REQUIREMENT
Transfer students who receive fewer than 6 credits for the required courses must make up the credit shortage with another physics course.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 201</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>or PHYSICS 207</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 202</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>or PHYSICS 208</td>
<td>General Physics</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 10

CHEMISTRY REQUIREMENT
Credit shortages cause by transfer of freshman chemistry courses at fewer than 9 credits must be made up with chemistry, biochemistry, or chemical engineering courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 103</td>
<td>General Chemistry I</td>
<td></td>
</tr>
<tr>
<td>& CHEM 104</td>
<td>and General Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 329</td>
<td>Fundamentals of Analytical Science</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 343</td>
<td>Introductory Organic Chemistry and Intermediate Organic Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>& CHEM 345</td>
<td>and Introductory Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 562</td>
<td>Physical Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 20
LIFE SCIENCE

Students who meet the Introductory Biology requirement with an AP exam are encouraged to take two advanced biology electives.1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOOLOGY 153</td>
<td>Introductory Biology</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY/BIOLOGY/BOTANY 151</td>
<td>Introductory Biology</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Biology requirement (choose one) 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOCHEM 501</td>
<td>Introduction to Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BIOCHEM 507</td>
<td>General Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 570</td>
<td>Cell Biology</td>
<td></td>
</tr>
<tr>
<td>GENETICS 466</td>
<td>Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td>MICROBIO 303</td>
<td>Biology of Microorganisms</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 6

1 BIOCORE 381 Evolution, Ecology, and Genetics and BIOCORE 383 Cellular Biology may be used to satisfy the Life Sciences Requirements.

CORE ENGINEERING REQUIREMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE 150</td>
<td>Introduction to Chemical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>CBE 250</td>
<td>Process Synthesis</td>
<td>3</td>
</tr>
<tr>
<td>CBE 255</td>
<td>Introduction to Chemical Process Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CBE 310</td>
<td>Chemical Process Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CBE 311</td>
<td>Thermodynamics of Mixtures</td>
<td>3</td>
</tr>
<tr>
<td>CBE/BME 320</td>
<td>Introductory Transport Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>CBE 324</td>
<td>Transport Phenomena Lab</td>
<td>3</td>
</tr>
<tr>
<td>CBE 326</td>
<td>Momentum and Heat Transfer Operations</td>
<td>3</td>
</tr>
<tr>
<td>CBE 424</td>
<td>Operations and Process Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>CBE 426</td>
<td>Mass Transfer Operations</td>
<td>3</td>
</tr>
<tr>
<td>CBE 430</td>
<td>Chemical Kinetics and Reactor Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE 440</td>
<td>Chemical Engineering Materials</td>
<td></td>
</tr>
<tr>
<td>CBE 540</td>
<td>Polymer Science and Technology</td>
<td></td>
</tr>
<tr>
<td>CBE 547</td>
<td>Introduction to Colloid and Interface Science</td>
<td></td>
</tr>
<tr>
<td>CBE 450</td>
<td>Process Design</td>
<td>3</td>
</tr>
<tr>
<td>CBE 470</td>
<td>Process Dynamics and Control</td>
<td>3</td>
</tr>
<tr>
<td>CBE Electives 2</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits 49

2 Chemical Engineering electives may be chosen from any of the CBE courses that are not required, numbered 300 or above (excluding seminar courses). A maximum of two credits of co-op work (CBE 1 Cooperative Education Program) may be used to meet the CBE elective requirement. BSE/FOOD SCI 642 Food and Pharmaceutical Separations can be taken as a CBE elective. Qualified undergraduates may take graduate-level (600 or 700) courses to fulfill this requirement.

PROFESSIONAL BREADTH

Select 6 credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE 150</td>
<td>Introduction to Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>CBE 250</td>
<td>Process Synthesis</td>
<td></td>
</tr>
<tr>
<td>CBE 255</td>
<td>Introduction to Chemical Process Modeling</td>
<td></td>
</tr>
<tr>
<td>CBE 310</td>
<td>Chemical Process Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>CBE 311</td>
<td>Thermodynamics of Mixtures</td>
<td></td>
</tr>
<tr>
<td>CBE/BME 320</td>
<td>Introductory Transport Phenomena</td>
<td></td>
</tr>
<tr>
<td>CBE 324</td>
<td>Transport Phenomena Lab</td>
<td></td>
</tr>
<tr>
<td>CBE 326</td>
<td>Momentum and Heat Transfer Operations</td>
<td></td>
</tr>
<tr>
<td>CBE 424</td>
<td>Operations and Process Laboratory</td>
<td></td>
</tr>
<tr>
<td>CBE 426</td>
<td>Mass Transfer Operations</td>
<td></td>
</tr>
<tr>
<td>CBE 430</td>
<td>Chemical Kinetics and Reactor Design</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 6

1 BIOCORE 381 Evolution, Ecology, and Genetics and BIOCORE 383 Cellular Biology may be used to satisfy the Life Sciences Requirements.

Students may petition the department to allow other courses related to engineering professional practice. To request that a course not listed above be used, the student should fill out the Professional Breadth Requirement Course Request form available online and submit it to the advisor. The department will then determine if the course can be counted toward the Professional Breadth Requirement. Petitions must be
Students must complete 16 credits of liberal studies according to the COMMUNICATION SKILLS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 100</td>
<td>Introduction to College Composition</td>
<td>3</td>
</tr>
<tr>
<td>or COM ARTS 100</td>
<td>Introduction to Speech Composition</td>
<td>5</td>
</tr>
<tr>
<td>or LSC 100</td>
<td>Science and Storytelling</td>
<td>3</td>
</tr>
<tr>
<td>or ESL 118</td>
<td>Academic Writing II</td>
<td>3</td>
</tr>
</tbody>
</table>

E P D 397 Technical Communication 3

Students fulfilling their course requirements with fewer than 132 credits must take additional free-elective credits to comply with the 132-credit minimum graduation requirement.

COURSE SUBSTITUTION REGULATIONS

1. Any student may, with advisor approval, replace up to 12 credits of required courses in the curriculum, except CBE 424 Operations and Process Laboratory, by an equal number of credits of other courses within the limitations listed under (3) below.

2. Any student who wishes to amend the curriculum by more than 12 credits or wishes to appeal the advisor's decision in (1) or to request exception to (3) below must submit a written request to the chair of the department, who will bring it to the department faculty for consideration.

3. Restrictions on course substitutions are as follows:
 a. Physics course may be replaced by science or engineering courses.
 b. Chemistry/life science courses must be replaced by courses with significant chemistry/life science content.
 c. Engineering courses must be replaced by engineering courses.
 d. Lab courses must be replaced by courses with an equal number of hours of lab courses.
 e. English as a Second Language courses, and MATH 112 Algebra, MATH 113 Trigonometry, and MATH 114 Algebra and Trigonometry may not be used for course substitutions.

UNIVERSITY DEGREE REQUIREMENTS

To receive a bachelor’s degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

Residency Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. "In residence" credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.

Quality of Work Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies
8. ability with engineering application of the basic sciences to the design, analysis, and control of chemical, physical, and biological processes, including the hazards associated with these processes.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits</th>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 109</td>
<td>5</td>
<td>CHEM 329</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 221</td>
<td>5</td>
<td>MATH 222</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBE 150</td>
<td>1</td>
<td>PHYSICS 201</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications A</td>
<td>3</td>
<td>Liberal Studies Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liberal Studies Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credits</th>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE 250</td>
<td>3</td>
<td>CBE 255</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 343</td>
<td>3</td>
<td>MATH 320 or 319</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 234</td>
<td>4</td>
<td>CBE 310</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS 202</td>
<td>5</td>
<td>CHEM 345 & CHEM 344</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 153</td>
<td>3</td>
<td>STAT 324</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Credits</th>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE 311</td>
<td>3</td>
<td>CBE 326</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBE/BME 320</td>
<td>4</td>
<td>CBE 324</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Breadth Elective</td>
<td>3 CHEM 562</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Biology Elective</td>
<td>3 E P D 397</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liberal Studies Elective</td>
<td>3 Liberal Studies Elective</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Credits</th>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE 426</td>
<td>3</td>
<td>CBE 450</td>
<td>3 CBE 424</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

CBE Elective	3	CBE Elective	3
Materials Elective	3	Professional Breadth Elective	3
Liberal Studies Elective	3		
	15	12	5

Total Credits 132

1 CBE 250 Process Synthesis and CBE/BME 320 Introductory Transport Phenomena both require a grade of C or better.
2 CHEM 343 Introductory Organic Chemistry requires a grade of C or better.

ADVISING AND CAREERS

ADVISING
Each College of Engineering program has academic advisors dedicated to serving its students. Program advisors can help current College of Engineering students with questions about accessing courses, navigating degree requirements, resolving academic issues and more. Students can find their assigned advisor on the homepage of their student center.

ENGINEERING CAREER SERVICES
Engineering Career Services (ECS) assists students in identifying pre-professional work-based learning experiences such as co-ops and summer internships, considering and applying to graduate or professional school, and finding full-time professional employment during their graduation year.

ECS offers two major career fairs per year, assists with resume writing and interviewing skills, hosts workshops on the job search, and meets one-on-one with students to discuss offer negotiations.

Students are encouraged to utilize the ECS office early in their academic careers. For comprehensive information on ECS programs and workshops, see the ECS website or call 608-262-3471.

PEOPLE

PROFESSORS
Dumesic
Graham
Huber
Klingenberg
Kuech
Lynn
Maravelias
Mavrikakis
Murphy (chair)
Palacek
Pfleger
Root
Shusta
Yin

ASSOCIATE PROFESSORS
Reed
Swaney
Zavala Tejada

ASSISTANT PROFESSORS
Van Lehn

ACCREDITATION

Accreditation.

Note: Undergraduate Program Educational Objectives and Student Outcomes are made publicly available at the Departmental website. (In this Guide, the program's Student Outcomes are designated by our campus as "Learning Outcomes.")