Civil engineering shapes our world by supporting the health and safety of the environment and the communities we call home. It's a multidisciplinary career field dedicated to public good by designing, building, operating, and maintaining:

- Buildings, homes, schools, theaters, and stadiums where we live, learn, work, and play
- · Highways, streets, and bridges where we walk, bike, and drive
- Systems and infrastructure that guard us from flooding and provide safe water for drinking, swimming, and recreation
- Transportation hubs like airports, railways, and harbors that support the movement of people and goods
- Treatment and emission systems that ensure the safety of the air we breathe
- Systems for recycling, reusing, and disposing of solid and hazardous waste
- Production and transmission systems for conventional and renewable energy sources

As our infrastructure needs evolve and older generations leave the workforce, the demand for civil engineers is on the rise. The U.S. Bureau of Labor and Statistics projects over 21,000 job openings annually in the civil engineering field now through 2032, exceeding the average for other occupations.

At the University of Wisconsin–Madison, we help future engineers prepare for what's ahead with hands-on learning opportunities in well-equipped labs (https://engineering.wisc.edu/news/vacuum-box-enhances-structures-lab-testing-capacity/), computer facilities, onsite and field experiences, and our capstone design course (https://engineering.wisc.edu/blog/cee-capstone-course-wins-7th-ncees-award-for-renewable-energy-project/).

You'll learn from supportive professors and practicing engineers while using the tools and technology that civil engineers use every day. Working with other students, you'll create solutions to challenges in our natural and built environments for real-world clients. And as you move forward in the program, you'll be ready for internships and co-ops (https://engineering.wisc.edu/blog/a-blueprint-for-success-schiesls-journey-from-student-to-alum/) that add to your education and offer valuable experience before graduation day.

Required civil engineering courses cover the breadth of fundamental knowledge you will need in this career field. Elective courses in facility design or operation help you tailor your studies and explore the latest innovations and methods for integrating sustainability, resilience to climate change, smart infrastructure, and virtual reality into engineering design and operation. There are also a variety of certificate programs that you can pair with your degree, including a Certificate in Architecture (https://guide.wisc.edu/undergraduate/engineering/civil-environmental-engineering/architecture-certificate/).

We encourage students to take the Fundamentals of Engineering (FE) exam before or shortly after graduating (https://engineering.wisc.edu/blog/taking-the-fe-exam-as-an-undergrad/), which is the first step in professional engineering licensure and its benefits. A pass rate of 95%

among our students surpasses the national average of 70%, ensuring our graduates are well-prepared for their careers.

Alumni from our program find jobs with planning and design consulting firms (https://engineering.wisc.edu/blog/from-student-to-startup-co-founder-olivia-fritz-sets-sights-on-sustainability-engineering/); architectural firms; construction companies; local, state, and federal agencies (https://engineering.wisc.edu/blog/anthony-heddlesten-2023-early-career-award-recipient/); and beyond. Areas of expertise include construction engineering and management, environmental engineering, geological and geotechnical engineering, structural engineering, transportation engineering, and water resources. Common entry-level job titles include civil engineer, field engineer, design engineer, structural engineer, surveyor, and transportation engineer.

VISION

Develop and maintain a learning community that pursues new knowledge and understanding, and provides innovative and sustainable solutions to human and ecological needs.

MISSION OF BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE) PROGRAM

Create, integrate, and transfer civil engineering knowledge and practice in the development of professionals, leaders, and citizens that help define and serve societal and environmental needs by applying this knowledge and practice in an effective and sustainable manner.

HOW TO GET IN

HOW TO GET IN ADMISSION TO THE COLLEGE AS A FIRSTYEAR STUDENT

Students applying to UW-Madison (https://www.admissions.wisc.edu/apply/) need to indicate an engineering major (https://engineering.wisc.edu/degrees-programs/undergraduate/) as their first choice in order to be considered for direct admission to the College of Engineering. Direct admission means that students get to start their college career in the engineering program of their choice and have access to engineering-specific resources and facilities. Students who are directly admitted need to meet progression requirements (https://engineering.wisc.edu/student-services/undergraduate-student-advising/progression/) at the end of the first year to guarantee advancement in that program.

CROSS-CAMPUS TRANSFER TO ENGINEERING

UW-Madison students in other schools and colleges on campus must meet minimum admission requirements (https://engineering.wisc.edu/admissions/undergraduate/cross-campus-students/) for admission consideration to engineering degree programs. Cross-campus admission is competitive and selective, and academic performance expectations may increase as demand trends change. The student's overall academic record at UW-Madison is also considered. Students apply to their intended engineering program by submitting the online application by stated deadlines for spring and fall. The College of Engineering offers an online information tutorial and advising (https://engineering.wisc.edu/

admissions/undergraduate/cross-campus-students/) for students to learn about the cross-campus transfer process.

OFF-CAMPUS TRANSFER TO ENGINEERING

With careful planning, students at other accredited institutions can transfer coursework that will apply toward engineering degree requirements at UW–Madison. Off-campus transfer applicants are considered for direct admission to the College of Engineering by applying to the Office of Admissions with an engineering major listed as their first choice. Those who are admitted to their intended engineering program must meet progression requirements (https://engineering.wisc.edu/admissions/undergraduate/transfer-from-off-campus/) at the point of transfer or within their first two semesters at UW–Madison to guarantee advancement in that program. A minimum of 30 credits in residence in the College of Engineering is required after transferring, and all students must meet all requirements for their engineering major. Transfer admission to the College of Engineering is competitive and selective, and students who have exceeded the 80 credit limit at the time of application are not eligible to apply.

The College of Engineering has dual degree programs with select fouryear UW System campuses. Eligible dual degree applicants are not subject to the 80 credit limit.

Off-campus transfer students are encouraged to discuss their interests, academic background, and admission options with the Transfer & Academic Program Manager in the College of Engineering: ugtransfer@engr.wisc.edu or 608-262-2473.

SECOND BACHELOR'S DEGREE

The College of Engineering does not accept second undergraduate degree applications. Second degree student (https://engineering.wisc.edu/admissions/undergraduate/adult-students-second-degree-students/)s (https://engineering.wisc.edu/student-services/undergraduate-student-advising/) might explore the Biological Systems Engineering program at UW-Madison, an undergraduate engineering degree elsewhere, or a graduate program in the College of Engineering.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin-Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (https://guide.wisc.edu/undergraduate/#requirementsforundergraduatestudytext) section of the Guide.

General Education

- Breadth-Humanities/Literature/Arts: 6 credits
- Breadth-Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- · Breadth-Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *
- * The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

SUMMARY OF REQUIREMENTS

The following curriculum applies to students admitted to the civil engineering degree program.

Code	Title	Credits
Introduction to Engine	eering	3
Mathematics and Stat	tistics	19
Basic Science		16
Engineering Mechanic	cs	10
Civil Engineering Mec	hanics	6
Civil Engineering Tool	S	6
Civil Engineering Brea	ıdth	21
Civil Engineering Desi	gn	10
Engineering Electives		13
Communications		8
Liberal Studies		16
Total Credits		128

INTRODUCTION TO ENGINEERING

Code	Title	Credits
INTEREGR 170	Design Practicum	3
Total Credits		3

MATHEMATICS AND STATISTICS REQUIREMENT

Code	Title	Credits
Mathematics		
MATH 221	Calculus and Analytic Geometry 1	5
or MATH 217	Calculus with Algebra and Trigonometry II	
MATH 222	Calculus and Analytic Geometry 2	4
MATH 234	CalculusFunctions of Several Variables	4
Statistics		

Statistics

One of the following options:

STAT 324	Introduction to Statistics for Science

324 Introduction to Statistics for Science

and Engineering

or I SY E 210 Introduction to Industrial Statistics

STAT 311 & STAT 312	Introduction to Theory and Methods of Mathematical Statistics I and Introduction to Theory and Methods of Mathematical Statistics II			
Advanced Mathe	Advanced Mathematics			
One of the followin	g options:	3		
MATH 319	Techniques in Ordinary Differential Equations			
MATH 320	Linear Algebra and Differential Equations			

BASIC SCIENCE REQUIREMENT

Total Credits

Total Credits

Code	Title	Credits
One of the following:		5-9
CHEM 103 & CHEM 104	General Chemistry I and General Chemistry II	
CHEM 109	Advanced General Chemistry	
One of the following:		5
PHYSICS 202	General Physics	
PHYSICS 208	General Physics	
One of the following:		3
GEOSCI 100	Introductory Geology: How the Earth Works	
GEOSCI/ ENVIR ST 106	Environmental Geology	
One of the following:		3
ZOOLOGY/ BIOLOGY/ BOTANY 151	Introductory Biology	
ZOOLOGY 153	Introductory Biology	
ZOOLOGY/ BOTANY/ ENVIR ST 260	Introductory Ecology	
MICROBIO 101	General Microbiology	

ENGINEERING MECHANICS REQUIREMENT

16-20

Code	Title	Credits
E M A 201	Statics (with a grade of C or better)	3
E M A 202	Dynamics	3
E M A 303	Mechanics of Materials	3
EMA/ME 307	Mechanics of Materials Lab	1
Total Credits		10

CIVIL ENGINEERING MECHANICS REQUIREMENT

Code	Title	Credits
CIV ENGR 310	Fluid Mechanics	3
CIV ENGR/ E M A 395	Materials for Constructed Facilities	3
Total Credits		6

CIVIL ENGINEERING TOOLS REQUIREMENT

Code	Title	Credits
CIV ENGR 159	Civil Engineering Graphics (was ME 170 before Fall 2023)	2-3
or M E 231	Geometric Modeling for Design and Manu	facturing
CIV ENGR/G L E 291	Problem Solving Using Computer Tools	4
Total Credits		6-7

CIVIL ENGINEERING BREADTH REQUIREMENT

Code	Title	Credits
CIV ENGR 311	Hydroscience	3
CIV ENGR 320	Environmental Engineering	3
CIV ENGR/ G L E 330	Soil Mechanics	3
CIV ENGR 340	Structural Analysis I	3
CIV ENGR 370	Transportation Engineering	3
CIV ENGR 494	Civil and Environmental Engineering Decision Making	3
CIV ENGR 498	Construction Project Management	3
Total Credits		21

CIVIL ENGINEERING DESIGN REQUIREMENT

	Code	Title	Credits
	CIV ENGR 578	Senior Capstone Design	4
	the following CEE dis	ake at least one class in at least two of ciplines, for a total of 6 credits. One JST be completed BEFORE taking r Capstone Design.	6
	Water Resources		
	CIV ENGR 414	Hydrologic Design	
	Environmental		
	CIV ENGR 426	Design of Wastewater Treatment Plants	
	CIV ENGR 427	Solid and Hazardous Wastes Engineering	
	CIV ENGR 428	Water Treatment Plant Design	
	CIV ENGR 522	Hazardous Waste Management	
	Structural		
	CIV ENGR 445	Steel Structures I	
	CIV ENGR 447	Concrete Structures I	
	Geological		
	CIV ENGR/ G L E 530	Seepage and Slopes	
	CIV ENGR/ G L E 532	Foundations	
	Transportation		
	CIV ENGR 573	Geometric Design of Transport Facilities	
	CIV ENGR 574	Traffic Control	
	CIV ENGR 576	Advanced Pavement Design	

Note: If a student takes three or more courses from the above list, two of those courses will count toward this civil engineering design requirement and the other classes will count towards the electives requirement (see section below).

Total Credits 10

ENGINEERING ELECTIVES REQUIREMENT

- Students must take at least 3 credits of coursework from an ABETaccredited degree-granting program outside of the Bachelor of Science in Civil Engineering program. INTEREGR and E P D courses do not qualify for meeting this requirement; any courses cross-listed with Civil Engineering (CIV ENGR) do not qualify for meeting this requirement.
- Students must take at least 3 credits of CEE coursework in addition to the civil engineering design requirement. **Note:** Students in the Construction Engineering Management or Environmental Engineering option programs must select from a set of CIV ENGR courses approved for those options. ^{1,2,3}
- 3. Students must take at least 7 credits of coursework that meets at least one of the following ^{1,2,3}:
 - Any course offered by an engineering department, including but not limited to CIV ENGR.
 - Any Intermediate or Advanced level course with a breadth designation of Biological Sciences, Physical Sciences and/or Natural Sciences. These courses cannot also carry a breadth designation of Social Sciences, Humanities or Literature.
 - c. Any of the following business courses: INTEREGR 303 Applied Leadership Competencies in Engineering, ACCT I S 300 Accounting Principles, FINANCE/ECON 300 Introduction to Finance, GEN BUS 301 Business Law, M H R 300 Managing Organizations, REAL EST/A A E/ECON/URB R PL 306 The Real Estate Process

Total Credits: 13

- ¹ Up to three credits of CIV ENGR 1 Cooperative Education Program may be used towards Item 2 or 3.
- Up to six credits of research work (CIV ENGR 299 Independent Study, CIV ENGR 489 Honors in Research, and/or CIV ENGR 699 Independent Study) may be used towards Item 2 or 3.
- CIV ENGR 121 Sustainability Engineering for Non-Engineers, CIV ENGR 150 Introduction to Architectural Theory, CIV ENGR 151 Architectural Making I, CIV ENGR 152 Architectural Making II, CIV ENGR 155 Architectural Thinking, and CIV ENGR 250 Architectural Visualization cannot be used in Items 2 or 3 above.

COMMUNICATIONS

Cod	de mmunications A	Title	Credits
COI	illiuliications A	(Choose one)	3
E	ENGL 100	Introduction to College Composition	
L	_SC 100	Science and Storytelling	
	COM ARTS 100	Introduction to Speech Composition	
Е	ESL 118	Academic Writing II	
Spe	2		
I	NTEREGR 275	Technical Presentations (was EPD 275) ¹	

1	Total Credits		
	INTEREGR 397	Engineering Communication	
١	Writing-Related Course		
		Discussion	
	COM ARTS 266	Theory and Practice of Group	
	COM ARTS 262	Argumentation and Debate	
	COM ARTS 181	Elements of Speech-Honors Course	

¹ INTEREGR 275 Technical Presentations is strongly recommended.

LIBERAL STUDIES REQUIREMENTS

Code	Title	Credits
College of Engineer	ing Liberal Studies Requirements	

Complete Requirements (https://guide.wisc.edu/undergraduate/engineering/#requirementstext) 1

Requirements specific to Civil Engineering:

An economics course must be selected from the following list:

ECON 101	Principles of Microeconomics
ECON 102	Principles of Macroeconomics
ECON 111	Principles of Economics-
	Accelerated Treatment

A minimum of three credits of environmental studies course that meets the breadth designations of humanities, literature, and/or social science. Courses that also carry breadth designations of Biological Sciences, Natural Sciences, or Physical Sciences will not count towards this requirement.

Total Credits 16

Note: See a CEE academic advisor for additional information.

HONORS IN RESEARCH

Students in civil engineering that have completed at least two semesters on the Madison campus with a cumulative GPA of **at least** 3.5 may apply to participate in the Honors in Research program. Students may register for 1 to 3 credits per semester. A grade of P (Progress) will be assigned each semester until the student completes the honors in research program or drops out of the program, at which time a final grade is assigned (based on research progress and the written thesis, if completed). This becomes the grade for all credits taken in CIV ENGR 489 Honors in Research.

A senior thesis worth 3 credits of CIV ENGR 489 is required. The senior thesis is a written document reporting on a substantial piece of work that is prepared in the style of a graduate thesis. The thesis advisor determines the grade which the student receives for the thesis. A bound copy of the thesis must be submitted to the Department of Civil and Environmental Engineering office to complete the program.

The designation "Honors in Research" will be recorded on the student's transcript if the following criteria are met:

1. Satisfaction of requirements for an undergraduate degree in Civil Engineering.

All liberal studies credits must be identified with the letter H, S, L, or Z. Language courses are acceptable without the letter and are considered humanities. An economics elective and an environmental studies elective are required.

- 2. A cumulative grade-point average of at least 3.3.
- 3. Completion of a total of at least 8 credits in CIV ENGR 489.
- 4. Completion of a senior honors thesis with a final grade of B or better.

Students interested in the Honors in Research program should contact their advisor or the BSCE chair for more information. Applications to the program are to be submitted to the BSCE chair with a supporting letter from the student's academic and thesis advisors. Decisions regarding acceptance are made by the BSCE chair.

NAMED OPTIONS

View as listView as grid

CIVIL ENGINEERING: CONSTRUCTION ENGINEERING AND MANAGEMENT (HTTPS://GUIDE.WISC.EDU/UNDERGRADUATE/ENGINEERING/CIVILENVIRONMENTAL-ENGINEERING/CIVILENGINEERING-BS/CIVIL-ENGINEERING-CONSTRUCTION-ENGINEERING-MANAGEMENT-BS/)

UNIVERSITY DEGREE REQUIREMENTS

Total Degree To receive a bachelor's degree from UW-Madison,

students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit

requirements.

Residency Degree candidates are required to earn a minimum of

30 credits in residence at UW-Madison. "In residence" means on the UW-Madison campus with an undergraduate degree classification. "In residence" credit also includes UW-Madison courses offered in distance or online formats and credits earned in UW-Madison Study Abroad/Study Away programs.

7 Way program

Quality of Work Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES

LEARNING OUTCOMES

- an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- 3. an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must

- consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

FOUR-YEAR PLAN

FOUR-YEAR PLAN SAMPLE FOUR-YEAR PLAN

First Year

Fall	Credits Spring	Credits
MATH 221	5 MATH 222	4
CHEM 109	5 E M A 201	3
INTEREGR 170	3 CIV ENGR 159 or M E 231	2
or LIBERAL STUDIES	LIBERAL STUDIES or	3
COMMUNICATIONS A	3 INTEREGR 170	
	GEOSCI 100 or 106	3
	16	15

Second Year

Fall	Credits Spring	Credits
MATH 234	4 MATH 319 or 320	3
E M A 202	3 E M A 303	3
CIV ENGR 320	3 E M A/M E 307	1
BIOLOGY ELECTIVE	3 CIV ENGR 310	3
STAT 324	3 INTEREGR 275 (was EPD 275)	2
	ECON 101, 102, or 111	4
	16	16

Third Year

Fall	Credits Spring	Credits
CIV ENGR 311	3 CIV ENGR 340	3
CIV ENGR/G L E 330	3 CIV ENGR/E M A 395	3
CIV ENGR/G L E 291	4 CIV ENGR 498	3
ETHNIC STUDIES	3 CIV ENGR 370	3
INTEREGR 397	3 PHYSICS 202 or 208	5
16		

Fourth Year

Fall	Credits Spring	Credits
CIV ENGR DESIGN ELECTIVE	3 CIV ENGR 578	4
ENGR ELECTIVE	3 CIV ENGR DESIGN ELECTIVE	3
CIV ENGR ELECTIVE	3 ENGR ELECTIVE	3
CIV ENGR 494	3 LIBERAL STUDIES	3
ENV STUDIES ELECTIVE	3 ENGR OUTSIDE OF CIV ENGR	3

ENGR ELECTIVE 1

Total Credits 128

ADVISING AND CAREERS

ADVISING AND CAREERS ADVISING

Every College of Engineering undergraduate has an assigned academic advisor (https://engineering.wisc.edu/student-services/undergraduate-student-advising/). Academic advisors support and coach students through their transition to college and their academic program all the way through graduation.

Advisors help students navigate the highly structured engineering curricula and course sequencing, working with them to select courses each semester.

When facing a challenge or making a plan toward a goal, students can start with their academic advisor. There are many outstanding resources at UW–Madison, and academic advisors are trained to help students navigate these resources. Advisors not only inform students about the various resources, but they help reduce the barriers between students and campus resources to help students feel empowered to pursue their goals and communicate their needs.

Students can find their assigned advisor in their MyUW Student Center.

ENGINEERING CAREER SERVICES

Engineering Career Services (https://ecs.wisc.edu) (ECS) assists students in finding work-based learning experiences such as co-ops and summer internships, exploring and applying to graduate or professional school, and finding full-time professional employment.

ECS offers two large career fairs per year, assists students with resume building and developing interviewing skills, hosts skill-building workshops, and meets one-on-one with students to discuss offer negotiations.

Students are encouraged to engage with the ECS office early in their academic careers. For more information on ECS programs and workshops, visit: https://ecs.wisc.edu.

CERTIFICATION/LICENSURE

CERTIFICATION/LICENSURE

Licensure as a Professional Engineer is expected of civil engineers. Information on steps needed to obtain licensure is available from the National Council for the Examination of Engineers and Surveyors (NCEES) at https://ncees.org/engineering/.

ACCREDITATION

ACCREDITATION

Accredited by the Engineering Accreditation Commission of ABET (https://www.abet.org/), https://www.abet.org, under the commission's General Criteria and Program Criteria for Civil and Similarly Named Engineering Programs.

PROGRAM#EDUCATIONAL OBJECTIVES#FOR THE BACHELOR OF SCIENCE IN CIVIL ENGINEERING

16

We recognize that our graduates will choose to use the knowledge and skills that they have acquired during their undergraduate years to pursue a wide variety of career and life goals, and we encourage this diversity of paths. Whatever path our graduates may choose, we expect them to be meeting the following objectives at least three to five years after graduation:

- Design and construct both natural and built processes and systems to efficiently meet determined needs using technical knowledge; modern tools; design principles; ethical practice; and communication, leadership, and team skills.
- 2. Investigate natural and built systems by using measurements, experiments, and analysis tools.
- Understand, anticipate, and incorporate economic, environmental, political, social, safety, ethical and global considerations in the design, investigation, and construction of natural and built systems.
- Engage in lifelong learning to keep pace with the continuous evolution of policies, procedures, technologies and tools for engineering analysis, design, and decision making.
- 5. Serve others through participation in professional and/or civic activities and responsibilities.

Note: Undergraduate Student Outcomes, number of degrees conferred, and enrollment data are made publicly available at the Civil Engineering#Undergraduate Program website (https://engineering.wisc.edu/programs/degrees/civil-engineering-bs/). (In this Guide, the program's Student Outcomes are available through the "Learning Outcomes" tab.)