Civil Engineering, B.S.

The Department of Civil and Environmental Engineering offers an ABET-accredited B.S. degree in civil engineering, which may be accompanied by an option in environmental engineering or in construction engineering and management.

Civil and environmental engineers are responsible for the sustainable design of facilities that protect the health and welfare of communities and the environment, while also ensuring society’s financial health. More specifically, they are responsible for the conception, design, and construction of public works such as:

- the highways, streets, and bridges that we walk, bike, and drive on
- the water systems and earthworks that treat the water we drink, manage the water we swim in and boat on, and protect us and our property from floodwaters
- the homes, schools, factories, theaters, and stadiums in which we live, learn, work, and play
- the airports, railways, waterways, and harbors that provide additional mobility for people and the materials they produce and consume
- the treatment and emission systems that ensure the safety of the air we breathe
- the recycling, reuse, and disposal systems used to minimize the production of and also provide for the containment of the solid and hazardous wastes we produce
- the production and transmission facilities for the electricity we use, including generation facilities for both conventional and renewable energy sources

Civil and environmental engineers are also responsible for the operation of these facilities, an aspect of the field that is being rapidly integrated into the Internet of Things with real-time “big data” collection systems for automated control. This makes it possible for society to rely on:

- autonomous cars, trucks, and mass transport systems, providing safer travel with reduced traffic congestion, improved roadway capacity, reduced energy consumption and air emissions
- smart water infrastructure, including systems that will reduce water consumption, save energy, and improve community resiliency in the wake of natural and human-caused disasters
- intelligent buildings, including systems that reduce energy consumption, improve employee and student comfort, and allow for adaptation of structural systems to changing wind and seismic loads

All of the above items require a core knowledge in mathematics, statistics, physics, chemistry, biology, geology, computer science and computer design tools, as well as breadth in the different civil and environmental engineering disciplines. These disciplines include construction engineering and management, environmental engineering, geological and geotechnical engineering, structural engineering, transportation engineering, and water resources engineering. Civil and environmental engineers perform their work in an interdisciplinary setting requiring strong written and verbal communication skills, understanding of professional and ethical obligations coupled with risk management and decision-making, and commitment to lifelong learning and professional licensure.

VISION

Develop and maintain a learning community that pursues new knowledge and understanding, and provides innovative and sustainable solutions to human and ecological needs.

MISSION OF BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE) PROGRAM

Create, integrate, and transfer civil and environmental engineering knowledge and practice in the development of professionals, leaders, and citizens that help define and serve societal and environmental needs by applying this knowledge and practice in an effective and sustainable manner.

CIVIL ENGINEERING PROGRAM EDUCATIONAL OBJECTIVES

Prepare BSCE graduates to contribute to their communities through the following career and professional accomplishments:

1. Design and construct both natural and built processes and systems to efficiently meet determined needs using technical knowledge; modern tools; design principles; ethical practice; and communication, leadership, and team skills.
2. Utilize measurement and analysis tools along with experimental data in investigating natural and built systems.
3. Understand and incorporate economic, environmental, political, social, safety and global considerations in design, investigation and construction of natural and built systems.
4. Engage in lifelong learning to keep pace with the continuous evolution of policies, procedures, technologies and tools for engineering analysis, design, and decision making.
5. Serve others through participation in professional and/or civic activities and responsibilities.

HOW TO GET IN

ADMISSION TO THE COLLEGE AS A FRESHMAN

Students applying to UW–Madison (https://www.admissions.wisc.edu/apply) need to indicate an engineering major (https://www.engr.wisc.edu/academics/undergraduate-academics/choosing-a-major) as their first choice in order to be considered for direct admission to the College of Engineering. Direct admission to a major means students will start in the program of their choice in the College of Engineering and will need to meet progression requirements (https://www.engr.wisc.edu/academics/student-services/academic-advising/first-year-undergraduate-students/progression-requirements) at the end of the first year to guarantee advancement in that program.

CROSS-CAMPUS TRANSFER TO ENGINEERING

UW–Madison students in other schools and colleges on campus must meet the course and credit requirements for admission to engineering degree granting classifications specified in the general college requirements (https://www.engr.wisc.edu/academics/student-services/academic-advising/cross-campus-students). The requirements are the minimum for admission consideration. Cross-campus admission is competitive and selective, and the grade point average expectations may increase as demand trends change. The student’s overall academic record at UW–Madison is also considered. Students apply to their intended engineering program by submitting the online application by stated deadlines for spring and fall. The College of Engineering
Civil Engineering, B.S.

offers an online information tutorial and drop-in advising (https://www.engr.wisc.edu/academics/student-services/academic-advising/cross-campus-students) for students to learn about the cross-campus transfer process.

OFF-CAMPUS TRANSFER TO ENGINEERING

With careful planning, students at other accredited institutions can transfer coursework that will apply toward engineering degree requirements at UW–Madison. Off-campus transfer applicants are considered for direct admission to the College of Engineering by applying to the Office of Admissions with an engineering major listed as their first choice. Those who are admitted to their intended engineering program must meet progression requirements (https://www.engr.wisc.edu/academics/student-services/academic-advising/transfer-students) at the point of transfer or within their first two semesters at UW–Madison to guarantee advancement in that program. A minimum of 30 credits in residence in the College of Engineering is required after transferring, and all students must meet all requirements for their major in the college. Transfer admission to the College of Engineering is competitive and selective, and students who have earned more than 80 transferable semester credits at the time of application are not eligible to apply.

The College of Engineering has dual degree programs with select four-year UW System campuses. Eligible dual degree applicants are not subject to the 80 credit limit.

Off-campus transfer students are encouraged to discuss their interests, academic background, and admission options with the Transfer Coordinator in the College of Engineering: ugtransfer@engr.wisc.edu or 608-262-2473.

SECOND BACHELOR’S DEGREE

The College of Engineering does not accept second undergraduate degree applications. Second degree students (https://www.engr.wisc.edu/admissions/undergraduate-admissions/returning-adults-second-degree-students) might explore the Biological Systems Engineering program at UW–Madison, an undergraduate engineering degree elsewhere, or a graduate program in the College of Engineering.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatetestudytext) section of the Guide.

General Education

- Breadth—Humanities/Literature/Arts: 6 credits
- Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth—Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

SUMMARY OF REQUIREMENTS

The following curriculum applies to students who were admitted to the civil engineering degree program (classification changed to CEE) in fall 2016 or later.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEREGR 170</td>
<td>Design Practicum</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

INTRODUCTION TO ENGINEERING

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Calculus and Analytic Geometry 1</td>
<td>5</td>
</tr>
<tr>
<td>or MATH 217</td>
<td>Calculus with Algebra and Trigonometry II</td>
<td></td>
</tr>
<tr>
<td>or MATH 275</td>
<td>Topics in Calculus I</td>
<td></td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus and Analytic Geometry 2</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 276</td>
<td>Topics in Calculus II</td>
<td></td>
</tr>
<tr>
<td>MATH 234</td>
<td>Calculus and Functions of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

MATHEMATICS AND STATISTICS REQUIREMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 324</td>
<td>Introductory Applied Statistics for Engineers</td>
<td></td>
</tr>
<tr>
<td>STAT 311</td>
<td>Introduction to Theory and Methods of Mathematical Statistics I</td>
<td></td>
</tr>
</tbody>
</table>

One of the following advanced mathematics courses: 3
MATH 319 Techniques in Ordinary Differential Equations

MATH 320 Linear Algebra and Differential Equations

Total Credits: 19

BASIC SCIENCE REQUIREMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 103 & CHEM 104</td>
<td>General Chemistry I and General Chemistry II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 202</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 208</td>
<td>General Physics</td>
<td>3</td>
</tr>
<tr>
<td>GEOSCI 100</td>
<td>Introductory Geology: How the Earth Works</td>
<td>3</td>
</tr>
<tr>
<td>GEOSCI/ENVIR ST 106</td>
<td>Environmental Geology</td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY/ BIOLOGY/ BOTANY 151</td>
<td>Introductory Biology</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 153</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY/ BOTANY/ ENVIR ST 260</td>
<td>Introductory Ecology</td>
<td></td>
</tr>
<tr>
<td>MICROBIO 101</td>
<td>General Microbiology</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 16

ENGINEERING MECHANICS REQUIREMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E M A 201</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>E M A 202 or M E 240</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>E M A 303 or M E 306</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>E M A/M E 307</td>
<td>Mechanics of Materials Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits: 10

CIVIL ENGINEERING MECHANICS REQUIREMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENGR 310</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENGR/E M A 395</td>
<td>Materials for Constructed Facilities</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 6

CIVIL ENGINEERING TOOLS REQUIREMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M E 170</td>
<td>Civil Engineering Graphics</td>
<td>2-3</td>
</tr>
<tr>
<td>or M E 231</td>
<td>Geometric Modeling for Design and Manufacturing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENGR/G L E 291</td>
<td>Problem Solving Using Computer Tools</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 6-7

CIVIL ENGINEERING BREADTH REQUIREMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENGR 311</td>
<td>Hydroscience</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENGR 320</td>
<td>Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENGR/G L E 330</td>
<td>Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENGR 340</td>
<td>Structural Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENGR 370</td>
<td>Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENGR 494</td>
<td>Civil and Environmental Engineering Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENGR 498</td>
<td>Construction Project Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 21

CIVIL ENGINEERING DESIGN REQUIREMENT

Every student must take at least one class in at least two of the following CEE disciplines, for a total of 6 credits.

One of the two classes MUST be completed BEFORE taking CIV ENGR 578 Senior Capstone Design.

- **Water Resources**
 - CIV ENGR 414 Hydrologic Design
 - CIV ENGR 426 Design of Wastewater Treatment Plants
 - CIV ENGR 427 Solid and Hazardous Wastes Engineering
 - CIV ENGR 428 Water Treatment Plant Design
 - CIV ENGR 522 Hazardous Waste Management
- **Structural**
 - CIV ENGR 442 Wood Structures I
 - CIV ENGR 445 Steel Structures I
 - CIV ENGR 447 Concrete Structures I
 - CIV ENGR 641 Highway Bridges
- **Geological**
 - CIV ENGR/G L E 530 Seepage and Slopes
 - CIV ENGR/G L E 531 Retaining Structures
 - CIV ENGR/G L E 532 Foundations
- **Transportation**
 - CIV ENGR 573 Geometric Design of Transport Facilities
 - CIV ENGR 574 Traffic Control
 - CIV ENGR 576 Advanced Pavement Design
Note: If a student takes three or more courses from the above list, two of those courses will count toward this civil engineering design requirement and the other classes will count towards the electives requirement (see section below).

ENGINEERING ELECTIVES REQUIREMENT

1. Students must take at least 3 credits of coursework from an ABET-accredited degree-granting program outside of the Bachelor of Science in Civil Engineering program. INTEREGR and E P D courses do not qualify for meeting this requirement; any courses cross-listed with Civil Engineering (CIV ENGR) do not qualify for meeting this requirement.

2. Students must take at least 3 credits of CEE coursework in addition to the civil engineering design requirement. **Note:** Students in the Construction Engineering Management or Environmental Engineering option programs must select from a set of CIV ENGR courses approved for those options. 1, 2

3. Students must take at least 6 credits of coursework that meets at least one of the following 1, 2:
 a. Any course offered by an engineering department, including but not limited to CIV ENGR.
 b. Any Intermediate or Advanced level course with a breadth designation of Biological Sciences, Physical Sciences and/or Natural Sciences. These courses cannot also carry a breadth designation of Social Sciences, Humanities or Literature.
 c. Any of the following business courses: ACCT I S 300 Accounting Principles, FINANCE/ECON 300 Introduction to Finance, GEN BUS 301 Business Law, M H R 300 Managing Organizations, REAL EST/A A E/ECON/URB R PL 306 The Real Estate Process

Total Credits: 12

1 Up to three credits of CIV ENGR 1 Cooperative Education Program may be used towards Item 2 or 3.
2 Up to six credits of research work (CIV ENGR 299 Independent Study, CIV ENGR 489 Honors in Research, and/or CIV ENGR 699 Independent Study) may be used towards Item 2 or 3.

COMMUNICATIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 100</td>
<td>Introduction to College Composition</td>
<td>3</td>
</tr>
<tr>
<td>LSC 100</td>
<td>Science and Storytelling</td>
<td></td>
</tr>
<tr>
<td>COM ARTS 100</td>
<td>Introduction to Speech Composition</td>
<td></td>
</tr>
<tr>
<td>ESL 118</td>
<td>Academic Writing II</td>
<td></td>
</tr>
<tr>
<td>Speech-Related Course (choose one)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E P D 275</td>
<td>Technical Presentations</td>
<td>2</td>
</tr>
<tr>
<td>COM ARTS 105</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COM ARTS 181</td>
<td>Elements of Speech-Honors Course</td>
<td></td>
</tr>
<tr>
<td>COM ARTS 262</td>
<td>Theory and Practice of Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>COM ARTS 266</td>
<td>Theory and Practice of Group Discussion</td>
<td></td>
</tr>
<tr>
<td>Writing-Related Courses (choose one)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E P D 397</td>
<td>Technical Communication</td>
<td>1</td>
</tr>
</tbody>
</table>

LIBERAL STUDIES REQUIREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Engineering Liberal Studies Requirements</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Complete Requirements (http://guide.wisc.edu/undergraduate/engineering/#requirementstext)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements specific to Civil Engineering:

An economics course must be selected from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 101</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 102</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 111</td>
<td>Principles of Economics-Accelerated Treatment</td>
<td></td>
</tr>
</tbody>
</table>

A minimum of three credits of environmental studies course that meets the breadth designations of humanities, literature, and/or social science. Courses that also carry breadth designations of Biological Sciences, Natural Sciences, or Physical Sciences will not count towards this requirement.

Total Credits: 16

1 All liberal studies credits must be identified with the letter H, S, L, or Z. Language courses are acceptable without the letter and are considered humanities. An economics elective and an environmental studies elective are required.

NAMED OPTIONS

View as list

- **CIVIL ENGINEERING: CONSTRUCTION ENGINEERING AND MANAGEMENT** (http://guide.wisc.edu/undergraduate/engineering/civil-environmental-engineering/civil-engineering-bs/civil-engineering-construction-engineering-management-bs)
- **CIVIL ENGINEERING: ENVIRONMENTAL ENGINEERING** (http://guide.wisc.edu/undergraduate/engineering/civil-environmental-engineering/civil-engineering-bs/civil-engineering-environmental-engineering-bs)

UNIVERSITY DEGREE REQUIREMENTS

To receive a bachelor’s degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.
Residency
Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. “In residence” means on the UW–Madison campus with an undergraduate degree classification. “In residence” credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.

Quality of Work
Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES

1. (a) An ability to apply knowledge of mathematics, science, and engineering.
2. (b) An ability to design and conduct experiments, as well as to analyze and interpret data.
3. (c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
4. (d) An ability to function on multidisciplinary teams.
5. (e) An ability to identify, formulate, and solve engineering problems.
6. (f) An understanding of professional and ethical responsibility.
7. (g) An ability to communicate effectively.
8. (h) The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
9. (i) A recognition of the need for, and an ability to engage in life-long learning.
10. (j) A knowledge of contemporary issues.
11. (k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
12. (l) An ability to explain basic concepts in management, business, public policy, and leadership.
13. (m) An ability to explain the importance of professional licensure.
14. (n) An ability to understand common failure mechanisms of a component, process, or system and their causes and prevention.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

First Year
Fall
Credits
Spring
Credits
MATH 221
5 MATH 222
4
CHEM 109
5 E M A 201
3
INTEREGR 170
3 M E 170 or 231
2
COMMUNICATIONS A
3 LIBERAL STUDIES
3
GEOSCI 100 or 106
3
16
15

Second Year
Fall
Credits
Spring
Credits
MATH 234
4 MATH 319 or 320
3
E M A 202
3 E M A 303 or M E 306
3
CIV ENGR 320
3 E M A/M E 307
1
BIOLOGY ELECTIVE
3 E P D 275
2
STAT 324 or 311
3 CIV ENGR 310
3
ECON 101, 102, or 111
4
16
16

Third Year
Fall
Credits
Spring
Credits
CIV ENGR 311
3 CIV ENGR/G L E 330
3
CIV ENGR 340
3 CIV ENGR/E M A 395
3
CIV ENGR/G L E 291
4 CIV ENGR 498
3
ETHNIC STUDIES
3 CIV ENGR 370
3
E P D 397
3 PHYSICS 202 or 208
5
16
17

Fourth Year
Fall
Credits
Spring
Credits
CIV ENGR DESIGN ELECTIVE
3 CIV ENGR 578
4
CIV ENGR DESIGN ELECTIVE
3 APPLIED ENGR ELECTIVE
3
CIV ENGR ELECTIVE
3 APPLIED ENGR ELECTIVE
3
CIV ENGR 494
3 LIBERAL STUDIES
3
ENV STUDIES ELECTIVE
3 ENGR OUTSIDE OF CIV ENGR
3
FREE ELECTIVE
1
16
16

Total Credits 128

ADVISING AND CAREERS

ADVISING

Each College of Engineering program has academic advisors dedicated to serving its students. Program advisors can help current College of Engineering students with questions about accessing courses, navigating degree requirements, resolving academic issues and more. Students can find their assigned advisor on the homepage of their student center.

ENGINEERING CAREER SERVICES

Engineering Career Services (ECS) assists students in identifying pre-professional work-based learning experiences such as co-ops and summer internships, considering and applying to graduate or professional school, and finding full-time professional employment during their graduation year.

ECS offers two major career fairs per year, assists with resume writing and interviewing skills, hosts workshops on the job search, and meets one-on-one with students to discuss offer negotiations.
Students are encouraged to utilize the ECS office early in their academic careers. For comprehensive information on ECS programs and workshops, see the ECS website or call 608-262-3471.

PEOPLE

PROFESSORS
Bahia
Cramer
Hanna
Harrington
Hurley
Likos (chair)
Loheide II
McMahon
Noguera
Noyce
Park
Parra-Montesinos
Ran
Russell
Schauer
Wu

ASSOCIATE PROFESSORS
Ahn
Block
Fratta
Ginder-Vogel
Pincheira
Remucal

ASSISTANT PROFESSORS
Blum
Hampton
Hicks
Prabhakar
Pujara
Sone
Wang
Wright

ACCREDITATION

Accreditation.

Note: Undergraduate Program Educational Objectives and Student Outcomes are made publicly available at the Departmental website. (In this Guide, the program’s Student Outcomes are designated by our campus as “Learning Outcomes.”)