NUCLEAR ENGINEERING, B.S.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatestudytext) section of the Guide.

General Education

- Breadth—Humanities/Literature/Arts: 6 credits
- Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth—Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

NUCLEAR ENGINEERING CURRICULUM

The nuclear engineering curriculum is divided into two focus areas, one emphasizing nuclear power and one emphasizing medical and other non-power applications of radiation sciences. The power focus area is more appropriate for students seeking careers in the nuclear power industry, while the radiation sciences focus area is better suited for students interested in medical and non-power applications.

POWER FOCUS AREA CURRICULUM

The following curriculum applies to students who entered the program starting in Fall 2020.

SUMMARY OF REQUIREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Mathematics and Statistics</td>
<td>22</td>
</tr>
<tr>
<td>Science</td>
<td>Engineering Science</td>
<td>13</td>
</tr>
<tr>
<td>NUC</td>
<td>Nuclear Engineering Core</td>
<td>28</td>
</tr>
<tr>
<td>NUC</td>
<td>Nuclear Engineering Electives</td>
<td>8</td>
</tr>
<tr>
<td>NUC</td>
<td>Introduction to Engineering</td>
<td>8</td>
</tr>
<tr>
<td>NUC</td>
<td>Communication Skills</td>
<td>3</td>
</tr>
</tbody>
</table>

MATHEMATICS AND STATISTICS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Calculus and Analytic Geometry I</td>
<td>5</td>
</tr>
<tr>
<td>or MATH 217</td>
<td>Calculus with Algebra and Trigonometry II</td>
<td></td>
</tr>
<tr>
<td>or MATH 275</td>
<td>Topics in Calculus I</td>
<td></td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus and Analytic Geometry 2</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 276</td>
<td>Topics in Calculus II</td>
<td></td>
</tr>
<tr>
<td>MATH 234</td>
<td>Calculus—Functions of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>MATH 320</td>
<td>Linear Algebra and Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 321</td>
<td>Applied Mathematical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 324</td>
<td>Introductory Applied Statistics for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 129

SCIENCE

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry</td>
<td>5-9</td>
</tr>
<tr>
<td>CHEM 103</td>
<td>General Chemistry I</td>
<td></td>
</tr>
<tr>
<td>& CHEM 104</td>
<td>and General Chemistry II</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 202</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>or PHYSICS 208</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 241</td>
<td>Introduction to Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>or PHYSICS 205</td>
<td>Modern Physics for Engineers</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 13-17

ENGINEERING SCIENCE

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E M A 201</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>E M A 202</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>or M E 240</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>E M A 303</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>or M E 306</td>
<td>Mechanics of Materials</td>
<td></td>
</tr>
<tr>
<td>E P 271</td>
<td>Engineering Problem Solving I</td>
<td>3</td>
</tr>
<tr>
<td>or COMP SCI 310</td>
<td>Problem Solving Using Computers</td>
<td></td>
</tr>
<tr>
<td>M S & E 350</td>
<td>Introduction to Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>M E 231</td>
<td>Geometric Modeling for Design and Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>M E 361</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4-6</td>
<td></td>
</tr>
<tr>
<td>CBE 320</td>
<td>Introductory Transport Phenomena</td>
<td></td>
</tr>
<tr>
<td>M E 363</td>
<td>Fluid Dynamics and Elementary Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>& M E 364</td>
<td>Fluid Dynamics</td>
<td></td>
</tr>
<tr>
<td>E E C 376</td>
<td>Electrical and Electronic Circuits</td>
<td>3</td>
</tr>
<tr>
<td>Computing Elective (select one of the following):</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 300</td>
<td>Programming II</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 412</td>
<td>Introduction to Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>E M A/E P 471</td>
<td>Intermediate Problem Solving for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>E M A/E P 476</td>
<td>Introduction to Scientific Computing for Engineering Physics</td>
<td>31-33</td>
</tr>
</tbody>
</table>

1. PHYSICS 321 Electric Circuits and Electronics is an acceptable substitute for E C E 376 Electrical and Electronic Circuits.

NUCLEAR ENGINEERING CORE

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>N E 305</td>
<td>Fundamentals of Nuclear Engineering</td>
<td>3</td>
</tr>
<tr>
<td>N E 405</td>
<td>Nuclear Reactor Theory</td>
<td>3</td>
</tr>
<tr>
<td>N E 408</td>
<td>Ionizing Radiation</td>
<td>3</td>
</tr>
<tr>
<td>N E 411</td>
<td>Nuclear Reactor Engineering</td>
<td>3</td>
</tr>
<tr>
<td>N E 412</td>
<td>Nuclear Reactor Design</td>
<td>5</td>
</tr>
<tr>
<td>N E/M S & E 423</td>
<td>Nuclear Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>N E 424</td>
<td>Nuclear Materials Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>N E 427</td>
<td>Nuclear Instrumentation Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>N E 428</td>
<td>Nuclear Reactor Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>N E 571</td>
<td>Economic and Environmental Aspects of Nuclear Energy</td>
<td>3</td>
</tr>
</tbody>
</table>

NUCLEAR ENGINEERING ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technical Electives (not to be confused with Nuclear Engineering Electives or Medical Physics Electives) choose 2 credits from:</td>
<td>2</td>
</tr>
<tr>
<td>N E 1</td>
<td>Cooperative Education Program (no more than 3 credits)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>300+ level courses in the CoE except for E P D/ INTEREGR</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>300+ level courses in MATH, PHYSICS, COMP SCI, STAT (except STAT 301), ASTRON, MED PHYS, and CHEM departments</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nuclear Engineering Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Select credits from Nuclear Engineering Electives Course List below</td>
<td>3</td>
</tr>
</tbody>
</table>

Nuclear Engineering Electives Course List

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Principles and Practice of Nuclear Reactor Operations</td>
<td>4</td>
</tr>
<tr>
<td>N E 406</td>
<td>Nuclear Reactor Analysis</td>
<td>3</td>
</tr>
<tr>
<td>N E 406</td>
<td>Principles of Corrosion</td>
<td>3</td>
</tr>
<tr>
<td>N E/M S & E 433</td>
<td>Monte Carlo Radiation Transport</td>
<td>3</td>
</tr>
<tr>
<td>M E/N E 520</td>
<td>Two-Phase Flow and Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>N E/E C E/ PHYSICS 525</td>
<td>Introduction to Plasmas</td>
<td>3</td>
</tr>
<tr>
<td>N E 536</td>
<td>Feasibility St of Power from Controlled Thermonuclear Fusion</td>
<td>3</td>
</tr>
<tr>
<td>N E 541</td>
<td>Radiation Damage in Metals</td>
<td>3</td>
</tr>
<tr>
<td>N E 545</td>
<td>Materials Degradation in Advanced Nuclear Reactor Environments</td>
<td>3</td>
</tr>
</tbody>
</table>

INTRODUCTION TO ENGINEERING

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEREGR 170</td>
<td>Design Practicum</td>
<td>3</td>
</tr>
</tbody>
</table>

COMMUNICATION SKILLS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 100</td>
<td>Introduction to College Composition</td>
<td>3</td>
</tr>
<tr>
<td>or LSC 100</td>
<td>Science and Storytelling</td>
<td>3</td>
</tr>
<tr>
<td>or COM ARTS 100</td>
<td>Introduction to Speech Composition</td>
<td>3</td>
</tr>
<tr>
<td>or ESL 118</td>
<td>Academic Writing II</td>
<td>3</td>
</tr>
<tr>
<td>E P D 275</td>
<td>Technical Presentations</td>
<td>2</td>
</tr>
<tr>
<td>INTEREGR 397</td>
<td>Engineering Communication (was EPD 397 before Fall 2020)</td>
<td>3</td>
</tr>
</tbody>
</table>

LIBERAL STUDIES ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>College of Engineering Liberal Studies Requirements (http://guide.wisc.edu/ undergraduate/engineering/#requirementstext)</td>
<td>16</td>
</tr>
</tbody>
</table>

1. Students must take 16 credits that carry H, S, L, or Z breadth designators. These credits must fulfill the following subrequirements:
 1. A minimum of two courses from the same department or program. At least one of these two courses must be designated as above the elementary level (I, A, or D) in the course listing.
 2. A minimum of 6 credits designated as humanities (H, L, or Z in the course listing), and an additional minimum of 3 credits designated as social science (S or Z in the course listing). Foreign language courses count as H credits. Retroactive credits for language courses may not be used to meet the Liberal Studies credit requirement (they can be used for subrequirement 1 above).
 3. At least 3 credits in courses designated as ethnic studies (lower case "e" in the course listing). These courses may help satisfy subrequirements 1 and 2 above, but they only count once toward the total required. Note: Some
For information on credit load, adding or dropping courses, course substitutions, pass/fail, auditing courses, dean's honor list, repeating courses, probation, and graduation, see the College of Engineering Official Regulations (http://guide.wisc.edu/undergraduate/engineering/#policiesandregulationstext).

RADIATION SCIENCES FOCUS AREA CURRICULUM

The following curriculum applies to students who entered the program starting in Fall 2020. Students wishing to select the Radiation Sciences focus area must have a 3.0 GPA and should send an email to the department Chair, Paul Wilson, chair@ep.wisc.edu including a copy of their transcript to show that they meet the GPA requirement and stating that they desire to declare the Radiation Sciences focus area; they should copy their academic advisor. Until this is done, the Power focus area is assumed.

SUMMARY OF REQUIREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mathematics and Statistics</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Engineering Science</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Nuclear Engineering Core Requirement</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Radiation Sciences Electives</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Introduction to Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication Skills</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Liberal Studies</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>129</td>
</tr>
</tbody>
</table>

MATHEMATICS AND STATISTICS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Calculus and Analytic Geometry 1</td>
<td>5</td>
</tr>
<tr>
<td>or MATH 217</td>
<td>Calculus with Algebra and Trigonometry II</td>
<td>5</td>
</tr>
<tr>
<td>or MATH 275</td>
<td>Topics in Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus and Analytic Geometry 2</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 276</td>
<td>Topics in Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 234</td>
<td>Calculus–Functions of Several Variables</td>
<td>2</td>
</tr>
<tr>
<td>MATH 320</td>
<td>Linear Algebra and Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 321</td>
<td>Applied Mathematical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 324</td>
<td>Introductory Applied Statistics for Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>22</td>
</tr>
</tbody>
</table>

SCIENCE

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 103</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>& CHEM 104</td>
<td>and General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 202</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>24</td>
</tr>
</tbody>
</table>

NUCLEAR ENGINEERING CORE REQUIREMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>N E 305</td>
<td>Fundamentals of Nuclear Engineering</td>
<td>3</td>
</tr>
<tr>
<td>N E 405</td>
<td>Nuclear Reactor Theory</td>
<td>3</td>
</tr>
<tr>
<td>N E 408</td>
<td>Ionizing Radiation</td>
<td>3</td>
</tr>
<tr>
<td>N E 412</td>
<td>Nuclear Reactor Design</td>
<td>5</td>
</tr>
<tr>
<td>N E 427</td>
<td>Nuclear Instrumentation Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>N E 428</td>
<td>Nuclear Reactor Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MED PHYS/ B M E/H ONCOL/ PHYSICS 501</td>
<td>Radiation Physics and Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>N E 571</td>
<td>Economic and Environmental Aspects of Nuclear Energy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>24</td>
</tr>
</tbody>
</table>

RADIATION SCIENCES ELECTIVES

Technical Electives (not to be confused with Nuclear Engineering Electives or Medical Physics Electives) choose 2 credits from:
Nuclear Engineering, B.S.

N E 1

Cooperative Education Program (no more than 3 credits)

300+ level courses in the CoE except for E P D/
INTEREGR

300+ level courses in MATH, PHYSICS, COMP SCI,
STAT (except STAT 301), ASTRON, MED PHYS and
CHEM departments

Medical Physics Electives

Select credits from Medical Physics Electives Course
List below

Total Credits

Medical Physics Electives Course List

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED PHYS/</td>
<td>Physics of Radiotherapy</td>
<td>3</td>
</tr>
<tr>
<td>B M E 566</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MED PHYS/N E 569</td>
<td>Health Physics and Biological Effects 2</td>
<td>3-4</td>
</tr>
<tr>
<td>MED PHYS/</td>
<td>Medical Image Science: Mathematical and Conceptual Foundations</td>
<td>3</td>
</tr>
<tr>
<td>B M E 573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MED PHYS/</td>
<td>Imaging in Medicine: Applications</td>
<td>3</td>
</tr>
<tr>
<td>B M E 574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MED PHYS/</td>
<td>Non-Ionizing Diagnostic Imaging</td>
<td>4</td>
</tr>
<tr>
<td>B M E 578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MED PHYS/</td>
<td>The Physics of Medical Imaging with Ionizing Radiation</td>
<td>4</td>
</tr>
<tr>
<td>B M E 580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MED PHYS/</td>
<td>Radiation Production and Detection</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MED PHYS 671</td>
<td>Selected Topics in Medical Physics 2</td>
<td>1-4</td>
</tr>
<tr>
<td>MED PHYS 701</td>
<td>Ethics and the responsible conduct of research and practice of Medical Physics</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits 11

Students are encouraged to access the online N E future course offering grid to plan their future course schedules and to confirm the offering of a course in the table.

1 Courses meeting the Medical Physics Electives requirement are MED PHYS courses numbered 500 and above and selected PHYSICS courses at or above the 400 level. No more than 3 credits of N E 699 Advanced Independent Study may be used to meet this requirement. (Refer to the NE handbook under Degree Information on the NE department website (https://www.engr.wisc.edu/department/ engineering-physics/academics/bs-nuclear-engineering/)).

2 N E/MED PHYS 569 Health Physics and Biological Effects and MED PHYS 671 Selected Topics in Medical Physics are especially recommended for students in this focus area.

COMMUNICATION SKILLS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 100</td>
<td>Introduction to College Composition</td>
<td>3</td>
</tr>
<tr>
<td>or LSC 100</td>
<td>Science and Storytelling</td>
<td></td>
</tr>
<tr>
<td>or COM ARTS 100</td>
<td>Introduction to Speech Composition</td>
<td></td>
</tr>
<tr>
<td>or ESL 118</td>
<td>Academic Writing II</td>
<td></td>
</tr>
<tr>
<td>E P D 275</td>
<td>Technical Presentations</td>
<td>2</td>
</tr>
<tr>
<td>INTEREGR 397</td>
<td>Engineering Communication (was EPD 397 before Fall 2020)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 11

LIBERAL STUDIES ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
</table>
| College of Engineering Liberal Studies Requirements

Complete Requirements (http://guide.wisc.edu/undergraduate/engineering/#requirementstext)

Total Credits 11

Students must take 16 credits that carry H, S, L, or Z breadth designators. These credits must fulfill the following subrequirements:

1. A minimum of two courses from the same department or program. At least one of these two courses must be designated as above the elementary level (I, A, or D) in the course listing.

2. A minimum of 6 credits designated as social science (S or Z in the course listing). Foreign language courses count as H credits. Retroactive credits for language courses may not be used to meet the Liberal Studies credit requirement (they can be used for subrequirement 1 above).

3. At least 3 credits in courses designated as ethnic studies (lower case “e” in the course listing). These courses may help satisfy subrequirements 1 and 2 above, but they only count once toward the total required. Note: Some courses may have “e” designation but not have H, S, L, or Z designation; these courses do not count toward the Liberal Studies requirement.

Note: Some courses may have “e” designation but not have H, S, L, or Z designation; these courses do not count toward the Liberal Studies requirement.

For information on credit load, adding or dropping courses, course substitutions, pass/fail, auditing courses, dean’s honor list, repeating courses, probation, and graduation, see the College of Engineering Official Regulations (http://guide.wisc.edu/undergraduate/engineering/#policiesandregulationstext).

HONORS IN UNDERGRADUATE RESEARCH PROGRAM

Qualified undergraduates may earn an Honor in Research designation on their transcript and diploma by completing 8 credits of undergraduate honors research, including a senior thesis. Further information is available in the department office.

UNIVERSITY DEGREE REQUIREMENTS

Total Degree

To receive a bachelor’s degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.
Residency
Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. "In residence" credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.

Quality of Work
Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.