The first bachelor of science in industrial engineering at the University of Wisconsin–Madison was awarded in 1972. Since that time the demand for industrial engineers has grown dramatically for one chief reason: the need for organizations to raise their level of productivity through thoughtful, systematic applications.

Becoming an industrial engineer (IE) places one in an exciting field of engineering that focuses on productivity improvement worldwide. It is a field that deals as much with human aspects of work as with today’s sophisticated tools of work.

What sets industrial engineering apart from other engineering disciplines is its broader scope. An IE deals with people as well as things. The industrial engineer applies problem-solving techniques in almost every kind of industry, business, or institution. There are IEs in banks, hospitals, government at all levels, transportation, construction, processing, social services, electronics, facilities design, manufacturing, and warehousing.

An IE looks at the "big picture" of what makes society perform best—the right combination of human resources, natural resources, and human-made structures and equipment. An IE bridges the gap between management and operations, dealing with and motivating people as well as determining what tools should be used and how they should be used. Industrial engineering is concerned with performance measures and standards, research of new products and product applications, ways to improve use of scarce resources, and many other problem-solving adventures.

Because industrial engineering serves a broad cross-section of business, industry and institutions, the IE's work environment varies from office to plant to field. Choices can be made even after the IE begins his or her career. Few other vocations offer a graduating student such a wide selection of places to work or kind of work to perform. Need for industrial engineers makes this profession particularly attractive from the financial standpoint. Beginning salaries rank in the top group of high-paying engineering disciplines, and fast advancement is not unusual.

In the industrial and systems engineering department at UW–Madison, the course curriculum is set up to provide a diversified background and at the same time allow choices according to individual interests. Specialized coursework might be categorized in four main areas:

- Engineering Analytics and Operations Research
- Healthcare Systems Engineering
- Human Factors and Ergonomics
- Manufacturing and Supply Chain Management

Although there is no sub major within IE, it is possible to achieve a degree of specialization through choice of a focus area. Courses focusing on teams and design projects prepare students to succeed in the workplace.

INDUSTRIAL ENGINEERING PROGRAM EDUCATIONAL OBJECTIVES

During the first several years following graduation from the program, a graduate from UW–Madison with a B.S. in industrial engineering would be expected to:

1. Demonstrate competence in the professional practice of industrial engineering.
2. Demonstrate industrial engineering skills needed as a foundation for leadership in a career and the profession.
3. Act with professional and ethical responsibility, fostering an inclusive work environment, and appreciate the impact of proposed solutions to a global and/or societal context.

HOW TO GET IN

ADMISSION TO THE COLLEGE AS A FRESHMAN

Students applying to UW–Madison need to indicate an engineering major as their first choice in order to be considered for direct admission to the College of Engineering. Direct admission to a major means students will start in the program of their choice in the College of Engineering and will need to meet progression requirements at the end of the first year to guarantee advancement in that program.

CROSS-CAMPUS TRANSFER TO ENGINEERING

UW–Madison students in other schools and colleges on campus must meet minimum admission requirements for admission consideration to engineering degree granting classifications. Cross-campus admission is competitive and selective, and the grade point average expectations may increase as demand trends change. The student’s overall academic record at UW–Madison is also considered.

Students apply to the College of Engineering by completing the online application by stated deadlines for spring and fall. The College of Engineering offers an online information tutorial and drop-in advising for students to learn about the cross-campus transfer process.

OFF-CAMPUS TRANSFER TO ENGINEERING

With careful planning, students at other accredited institutions can transfer coursework that will apply toward engineering degree requirements at UW–Madison. Off-campus transfer applicants are considered for direct admission to the College of Engineering by applying to the Office of Admissions with an engineering major listed as their first choice. Those who are admitted to their intended engineering program must meet progression requirements at the point of transfer or within their first two semesters at UW–Madison to guarantee advancement in that program. A minimum of 30 credits in residence at the College of Engineering is required after transferring, and all students must meet all requirements for their major in the college. Transfer admission to the College of Engineering is competitive and selective, and students who have exceeded the 80 credit limit at the time of application are not eligible to apply.

The College of Engineering has dual degree programs with select four-year UW System campuses. Eligible dual degree applicants are not subject to the 80 credit limit.

Off-campus transfer students are encouraged to discuss their interests, academic background, and admission options with the Transfer
Coordinator in the College of Engineering: ugtransfer@engr.wisc.edu or 608-262-2473.

SECOND BACHELOR’S DEGREE
The College of Engineering does not accept second undergraduate degree applications. Second degree student (https://engineering.wisc.edu/admissions/undergraduate/adult-students-second-degree-students/ or https://engineering.wisc.edu/student-services/undergraduate-student-advising/) might explore the Biological Systems Engineering program at UW–Madison, an undergraduate engineering degree elsewhere, or a graduate program in the College of Engineering.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS
All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatestudytext) section of the Guide.

General Education
- Breadth—Humanities/Literature/Arts: 6 credits
- Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth—Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

SUMMARY OF REQUIREMENTS
The following curriculum applies to students admitted to the Industrial Engineering, BS, degree program beginning in Fall 2020 or later. Required courses and electives satisfying the Mathematics and Basic Science, Computer Sciences, IE Focus Area, and General Education Communication requirements are indicated. For Liberal Studies Electives refer to the College of Engineering Liberal Studies Guidelines.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Calculus and Analytic Geometry 1</td>
<td>5</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus and Analytic Geometry 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 234</td>
<td>Calculus Functions of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>MATH 340</td>
<td>Elementary Matrix and Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>5-6</td>
</tr>
<tr>
<td>PHYSICS 201</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 207</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>E M A 201 & E M A 202</td>
<td>Statics and Dynamics</td>
<td></td>
</tr>
<tr>
<td>E M A 201 & M E 240</td>
<td>Statics and Dynamics</td>
<td></td>
</tr>
<tr>
<td>Choose 9 credits from the following list:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Basic Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAT&PHY 335</td>
<td>Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/BOTANY/ZOOLOGY 151</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td>CHEM 103 or CHEM 109 or CHEM 115</td>
<td>General Chemistry I ²</td>
<td></td>
</tr>
<tr>
<td>CHEM 104 or CHEM 115</td>
<td>Advanced General Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 116</td>
<td>Chemical Principles I</td>
<td></td>
</tr>
<tr>
<td>CHEM 311</td>
<td>Chemistry Across the Periodic Table</td>
<td></td>
</tr>
<tr>
<td>CHEM 327 or CHEM 329</td>
<td>Fundamentals of Analytical Science</td>
<td></td>
</tr>
<tr>
<td>CHEM 341</td>
<td>Elementary Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 342</td>
<td>Elementary Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 343</td>
<td>Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 344</td>
<td>Introductory Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 345</td>
<td>Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 346</td>
<td>Intermediate Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>MICROBIO 101</td>
<td>General Microbiology</td>
<td></td>
</tr>
<tr>
<td>MICROBIO 102</td>
<td>General Microbiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 202 or PHYSICS 206</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 248A</td>
<td>Modern Introduction to Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 205</td>
<td>Modern Physics for Engineers</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 241 or PHYSICS 249A</td>
<td>Introduction to Modern Physics</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives 4
Total Credits 120-122

Mathematics
Code and Title

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH/COMP SCI 240</td>
<td>Introduction to Discrete Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH 319</td>
<td>Techniques in Ordinary Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 421</td>
<td>The Theory of Single Variable Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 441</td>
<td>Introduction to Modern Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH/COMP SCI/STAT 475</td>
<td>Introduction to Combinatorics</td>
<td></td>
</tr>
<tr>
<td>MATH 521</td>
<td>Analysis I</td>
<td></td>
</tr>
<tr>
<td>MATH 522</td>
<td>Analysis II</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 30-31

1. If MATH 201 and MATH 202 or MATH 240 are used to fulfill the PHYSICS requirement, 5 additional credits of math or basic science will be required.

2. Credit will not be given for both CHEM 103 and CHEM 109 to fulfill Mathematics and Basic Science requirements.

PROBABILITY AND STATISTICS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 311</td>
<td>Introduction to Theory and Methods of Mathematical Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>or STAT/ MATH 309</td>
<td>Introduction to Probability and Mathematical Statistics I</td>
<td></td>
</tr>
<tr>
<td>I SY E 210</td>
<td>Introduction to Industrial Statistics</td>
<td>3</td>
</tr>
<tr>
<td>or STAT/ MATH 310</td>
<td>Introduction to Probability and Mathematical Statistics II</td>
<td></td>
</tr>
<tr>
<td>or STAT 312</td>
<td>Introduction to Theory and Methods of Mathematical Statistics II</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 6

COMPUTER SCIENCES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 220</td>
<td>Data Science Programming I</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following: 3-4

- COMP SCI 200 Programming I
- COMP SCI 300 Programming II
- COMP SCI 320 Data Science Programming II
- COMP SCI 400 Programming III
- COMP SCI 412 Introduction to Numerical Methods

Total Credits: 7-8

REQUIRED I SY E COURSES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I SY E 191</td>
<td>The Practice of Industrial Engineering</td>
<td>2</td>
</tr>
<tr>
<td>I SY E 312</td>
<td>Data Management and Analysis for Industrial Engineers</td>
<td>3</td>
</tr>
<tr>
<td>I SY E 313</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>I SY E 315</td>
<td>Production Planning and Control</td>
<td>3</td>
</tr>
<tr>
<td>I SY E 320</td>
<td>Simulation and Probabilistic Modeling</td>
<td>3</td>
</tr>
<tr>
<td>I SY E 321</td>
<td>Simulation Modeling Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>I SY E 323</td>
<td>Operations Research-Deterministic Modeling</td>
<td>3</td>
</tr>
<tr>
<td>I SY E 348</td>
<td>Introduction to Human Factors Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>I SY E/PSYCH 349</td>
<td>Introduction to Human Factors</td>
<td>3</td>
</tr>
<tr>
<td>I SY E 350</td>
<td>Industrial Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>I SY E 450</td>
<td>Industrial Engineering Design II</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 28

I SY E FOCUS AREA TECHNICAL ELECTIVES

Choose 1 of the following 6 focus areas.

Engineering Analytics and Operations Research

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I SY E 412</td>
<td>Fundamentals of Industrial Data Analytics</td>
<td>9</td>
</tr>
<tr>
<td>I SY E/COMP SCI/MATH 425</td>
<td>Introduction to Combinatorial Optimization</td>
<td></td>
</tr>
<tr>
<td>I SY E/CIV ENGR/N E 460</td>
<td>Uncertainty Analysis for Engineers</td>
<td></td>
</tr>
<tr>
<td>I SY E 516</td>
<td>Introduction to Decision Analysis</td>
<td></td>
</tr>
<tr>
<td>I SY E 521</td>
<td>Machine Learning in Action for Industrial Engineers</td>
<td></td>
</tr>
<tr>
<td>I SY E/COMP SCI/E C E 524</td>
<td>Introduction to Optimization</td>
<td></td>
</tr>
<tr>
<td>I SY E/COMP SCI/MATH/STAT 525</td>
<td>Linear Optimization</td>
<td></td>
</tr>
<tr>
<td>I SY E/COMP SCI 526</td>
<td>Advanced Linear Programming</td>
<td></td>
</tr>
<tr>
<td>I SY E/COMP SCI/MATH 558</td>
<td>Introduction to Computational Geometry</td>
<td></td>
</tr>
<tr>
<td>I SY E/N E 574</td>
<td>Methods for Probabilistic Risk Analysis of Nuclear Power Plants</td>
<td></td>
</tr>
<tr>
<td>I SY E 603</td>
<td>Special Topics in Engineering Analytics and Operations Research</td>
<td></td>
</tr>
<tr>
<td>I SY E 620</td>
<td>Simulation Modeling and Analysis</td>
<td></td>
</tr>
<tr>
<td>I SY E 624</td>
<td>Stochastic Modeling Techniques</td>
<td></td>
</tr>
<tr>
<td>I SY E/MATH/OTM/STAT 632</td>
<td>Introduction to Stochastic Processes</td>
<td></td>
</tr>
</tbody>
</table>

One elective I SY E course other than those listed in the Engineering Analytics and Operations Research area: 3

Additional elective I SY E courses in any area: 6

Total Credits: 18

Healthcare Systems Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I SY E 417</td>
<td>Health Systems Engineering</td>
<td>9</td>
</tr>
<tr>
<td>I SY E 517</td>
<td>Decision Making in Health Care</td>
<td></td>
</tr>
<tr>
<td>I SY E 557</td>
<td>Human Factors Engineering for Healthcare Systems</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 18
Human Performance and Accident Causation
- I SY E 555: Human Performance and Accident Causation
- I SY E/ MED PHYS 559: Patient Safety and Error Reduction in Healthcare
- I SY E 606: Special Topics in Healthcare Systems Engineering
- I SY E/ PHARMACY 608: Safety and Quality in the Medication Use System
- I SY E/B M I 617: Health Information Systems

One elective I SY E course other than those listed in the Healthcare Systems Engineering area
- Additional elective I SY E courses in any area

Total Credits: 18

Patient Safety and Error Reduction in Healthcare
- I SY E 559: Patient Safety and Error Reduction in Healthcare
- I SY E/M E 641: Design and Analysis of Manufacturing Systems
- I SY E/M E 643: Performance Analysis of Manufacturing Systems
- I SY E 645: Engineering Models for Supply Chains

One elective I SY E course other than those listed in the Manufacturing and Supply Chain Management area
- Additional elective I SY E courses in any area

Total Credits: 18

Health Information Systems
- I SY E/B M I 617: Health Information Systems

Special Topics in Healthcare Systems Engineering
- I SY E 606: Special Topics in Healthcare Systems Engineering

Safety and Quality in the Medication Use System
- I SY E/ PHARMACY 608: Safety and Quality in the Medication Use System

Distribution Focus Area
Choose at least 3:
- I SY E/COMP SCI/ DS 518: Wearable Technology
- I SY E/PSYCH 549: Human Factors Engineering
- I SY E 552: Human Factors Engineering Design and Evaluation
- I SY E 555: Human Performance and Accident Causation
- I SY E 557: Human Factors Engineering for Healthcare Systems
- I SY E 562: Human Factors of Data Science and Machine Learning
- I SY E/B M E 564: Occupational Ergonomics and Biomechanics
- I SY E 602: Special Topics in Human Factors
- I SY E/PSYCH 653: Organization and Job Design
- I SY E 649: Interactive Data Analytics
- I SY E/B M E 662: Design and Human Disability and Aging

One elective I SY E course other than those listed in the Human Factors and Ergonomics area
- Additional elective I SY E courses in any area

Total Credits: 18

Introduction to College Composition

Introduction to Speech Composition

Introduction to Industrial Engineering Research

Research and Beyond in Industrial Engineering

Honors Research Focus Area
Choose 5 courses in at least 2 of the 4 areas listed above (Engineering Analytics and Operations Research, Healthcare Systems Engineering, Human Factors and Ergonomics, and Manufacturing and Supply Chain Management)

Professional Electives, Communication Skills, and Liberal Studies

Professional Electives
- Choose 6 from:
 - College of Engineering courses numbered 200 or higher
 - Biological, natural, social, or physical sciences; humanities; or literature at the Intermediate or Advanced level
 - At most 5 credits of I SY E 699 and/or I SY E 1 (independent study courses from other engineering subject areas can also be used)
 - School of Business courses numbered 200 or higher (as well as ACCT I S 100)

Communication Skills
- ENGL 100: Introduction to College Composition
 - or COM ARTS 100: Introduction to Speech Composition
Industrial Engineering, B.S.

or LSC 100 Science and Storytelling
or ESL 118 Academic Writing II
INTEREGR 397 Engineering Communication 3

Liberal Studies 15
Liberal Studies Electives (according to CoE requirements)
(http://guide.wisc.edu/undergraduate/engineering/#requirementstext)
ECON 101 Principles of Microeconomics 4
Total Credits 27

1
 Professional electives may not include STAT 301 Introduction to Statistical Methods or transfer/test math elective credits for calculus.

FREE ELECTIVES
Code Title Credits
4 credits of Free Electives 4
Total Credits 4

MINIMUM REQUIRED CREDITS: 120
UNIVERSITY DEGREE REQUIREMENTS

Total Degree To receive a bachelor's degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

Residency Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. "In residence" credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.

Quality of Work Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES

1. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. Communicate effectively with a range of audiences
4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. Acquire and apply new knowledge as needed, using appropriate learning strategies
8. Recognize, describe, predict and analyze systems behavior
9. Understand physiological, cognitive, and sociotechnical aspects of humans as components in complex systems design
10. Apply the techniques, skills, and modern engineering tools necessary for engineering practice, such as quality engineering, optimization, simulation, and project management

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

First Year
Fall Credits Spring Credits
MATH 221 or 275 5 I SY E 191 2
ECON 101 4 MATH 222 or 276 4
COMP SCI 220 4 PHYSICS 201 5
Communications A 3 Liberal Studies Elective 3
16 14

Second Year
Fall Credits Spring Credits
I SY E 313 3 I SY E 315 3
MATH 234 4 I SY E 348 1
Liberal Studies Elective 2 I SY E /PSYCH 349 3
Computer Sciences Elective 3–4 MATH 340 3
Math and Basic Science Elective 3 Math and Basic Science Elective 3
I SY E 210 3
15–16 16

Third Year
Fall Credits Spring Credits
I SY E 312 3 I SY E 320 3
I SY E 323 3 I SY E 321 1
Professional Elective 3 I SY E 350 3
STAT 311 3 INTEREGR 397 3
Liberal Studies Elective 3 I SY E Focus Area Elective 3
Free Elective 1
15 14

Fourth Year
Fall Credits Spring Credits
I SY E Focus Area Elective 3 I SY E 450 3
I SY E Focus Area Elective 3 I SY E Focus Area Elective 3
Professional Elective 3 I SY E Focus Area Elective 3
Free Elective 3 I SY E Focus Area Elective 3
ADVISING
Each College of Engineering program has academic advisors dedicated to serving its students. Program advisors can help current College of Engineering students with questions about accessing courses, navigating degree requirements, resolving academic issues and more. Students can find their assigned advisor on the homepage of their student center.

ENGINEERING CAREER SERVICES
Engineering Career Services (ECS) assists students in identifying pre-professional work-based learning experiences such as co-ops and summer internships, considering and applying to graduate or professional school, and finding full-time professional employment during their graduation year.

ECS offers two major career fairs per year, assists with resume writing and interviewing skills, hosts workshops on the job search, and meets one-on-one with students to discuss offer negotiations.

Students are encouraged to utilize the ECS office early in their academic careers. For comprehensive information on ECS programs and workshops, see the ECS website or call 608-262-3471.

PEOPLE
PROFESSORS
Laura Albert (Chair)
Oguzhan Alagoz
John D. Lee
Jeffrey Linderoth
James Luedtke
Robert Radwin
Leyuan Shi
Raj Veeramani
Doug Wiegmann
Shiyu Zhou
ASSOCIATE PROFESSORS
Alberto Del Pia
Kaibo Liu
ASSISTANT PROFESSORS
Justin J. Boutilier
Tony McDonald
Carla Michini
Yonatan Mintz
Hantang Qin
Xin Wang
Qiaomin Xie
Gabriel Zayas-Caban
TEACHING PROFESSORS
Amanda Smith
TEACHING FACULTY
Hannah Silber
Sinan Tas
Tina Xu
Charlene Yauch
LECTURERS
Terry Mann
UNDERGRADUATE ADVISORS
Michele Crandell
Missy Moreau
GRADUATE PROGRAM COORDINATOR
Pam Peterson
See also Industrial and Systems Engineering Faculty Directory (http://directory.engr.wisc.edu/ie/faculty/).

ACCREDITATION
Accreditation.

Note: Undergraduate Program Educational Objectives and Student Outcomes are made publicly available at the Departmental website. (In this Guide, the program’s Student Outcomes are designated by our campus as “Learning Outcomes.”)