ENGINEERING MECHANICS: AEROSPACE ENGINEERING

Engineering mechanics is the home of aerospace engineering at UW-Madison. Some of the most exciting innovations in air and space travel require understanding of the engineering mechanics principles at the heart of this major. Whether there are humans in the cockpit or remotecontrolled drones, the interaction of an aircraft with its surroundings results in deformation, vibration and dynamic motions that are all explained by engineering mechanics. Even without the atmosphere experienced by aircraft, spacecraft and vehicles that explore distant planets must also withstand a variety of forces and be reliable in environments where repair may not be possible. In both cases, there is a premium on reducing weight and expanding capabilities. This makes aerospace engineering a natural extension of engineering mechanics. Following the same fundamental courses as our engineering mechanics major, students in the aerospace engineering option will apply their education in structural analysis, material science, advanced dynamics and vibrations to specific courses on aerodynamics, flight dynamics, orbital mechanics and propulsion. A highlight of this program is the aerodynamics laboratory where students conduct field experiments on the UW-Madison wind tunnel. Talk to your academic advisor about declaring this option.

REQUIREMENTS

The following curriculum applies to students who entered the College of Engineering beginning in Fall 2023.

SUMMARY OF REQUIREMENTS

Code	Title	Credits
Mathematics and Stat	cistics ¹	22
Science ¹		10
Engineering Science		27
Engineering Mechanic	cs/Aerospace Engineering Core	2 40
Technical Electives		5
Communication Skills		8
Liberal Studies		16
Total Credits		128

If the Mathematics and Statistics and the Science requirements are fulfilled with fewer than 30 credits combined, additional math/science credits will be needed to meet the math/science auxiliary credit condition.

MATHEMATICS AND STATISTICS

Code	Title	Credits
MATH 221	Calculus and Analytic Geometry 1	5
or MATH 217	Calculus with Algebra and Trigonometry II	
or MATH 275		
MATH 222	Calculus and Analytic Geometry 2	4
or MATH 276		

Total Credits		22
STAT 324	Introductory Applied Statistics for Engineers	3
CTAT 224	, ,	2
MATH 321	Applied Mathematical Analysis	3
MATH 320	Linear Algebra and Differential Equations	3
MATH 234	CalculusFunctions of Several Variables	4

SCIENCE

Code	Title	Credits
Select one of the f	following:	5-9
CHEM 109	Advanced General Chemistry	
CHEM 103 & CHEM 104	General Chemistry I and General Chemistry II	
PHYSICS 202	General Physics	5
Total Credits		10-14

ENGINEERING SCIENCE

Code	Title Cred	its
M E 201	Introduction to Mechanical Engineering	3
M E 231	Geometric Modeling for Design and Manufacturing	3
E P 271	Engineering Problem Solving I	3
or COMP SCI 200	Programming I	
or COMP SCI 220	Data Science Programming I	
M E 361	Thermodynamics	3
M E 363	Fluid Dynamics	3
or CIV ENGR 310	Fluid Mechanics	
E C E 376	Electrical and Electronic Circuits	3
or PHYSICS 321	Electric Circuits and Electronics	
M E 364	Elementary Heat Transfer	3
E C E 332	Feedback Control Systems	3
or M E 346	Introduction to Feedback Control for Mechanical Engineers	
or M E 446	Automatic Controls	
Computing Elective (s	select one)	3
COMP SCI 300	Programming II	
COMP SCI 412	Introduction to Numerical Methods	
EMA/EP 471	Intermediate Problem Solving for Engineers	
EMA/EP 476	Introduction to Scientific Computing	
	for Engineering Physics	
Total Credits		27

ENGINEERING MECHANICS/AEROSPACE

ENGINEERING CORE

Code	Title	Credits
E M A 201	Statics (with a grade of C or better)	3
E M A 202	Dynamics	3
or M E 240	Dynamics	
E M A 303	Mechanics of Materials	3
or M E 306	Mechanics of Materials	

Total Credits		40
E M A 524	Rocket Propulsion	
E M A 523	Flight Dynamics and Control	
Aerospace Fluid Mec	hanics Elective (select one)	3
E M A 642	Satellite Dynamics	
E M A 610	Structural Finite Element Model Validation	
EMA/ ASTRON 550	Astrodynamics	
Spacecraft & Structu	ral Dynamics Elective (select one)	3
E M A 569	Senior Design Project	3
E M A 545	Mechanical Vibrations	3
E M A 542	Advanced Dynamics	3
or M E 563	Intermediate Fluid Dynamics	
E M A 521	Aerodynamics	3
E M A 522	Aerodynamics Lab	
E M A 611	Advanced Mechanical Testing of Materials	
E M A/M E 570	Experimental Mechanics	
E M A/M E 540	Experimental Vibration and Dynamic System Analysis	
Experimental Mechan	nics Elective (select one)	3
E M A 506	Advanced Mechanics of Materials I	3
E M A 469	Design Problems in Engineering	3
E M A 405	Practicum in Finite Elements	3
EMA/ME 307	Mechanics of Materials Lab	1

TECHNICAL ELECTIVES

INTEREGR

Code	Title	Credits
Choose five cre	edits from:	5
EMA1	Cooperative Education Prog more than 3 credits)	gram (no
Courses nun	nbered 300+ in the CoE except for	EPD/

Up to 3 credits of independent study such as E M A 599; independent study from other engineering subjects may be approved on an individual basis

Courses numbered 300+ MATH, PHYSICS, COMP SCI, STAT (except STAT 301), ASTRON, MED PHYS, and CHEM departments

PHYSICS 205 Modern Physics for Engineers or PHYSICS 241 Introduction to Modern Physics

Students may also propose any class that they feel will benefit their education path with pre-requisite of two physics or calculus classes. For these courses the advisor will review the request and if approved, recommend a DARS substitution.

Total Credits 5

COMMUNICATION SKILLS

Code	Title	Credits
ENGL 100	Introduction to College Composition	3
or COM ARTS 100	Introduction to Speech Composition	
or LSC 100	Science and Storytelling	
or ESL 118	Academic Writing II	

Total Credits		8
INTEREGR 397	Engineering Communication	3
E P D 275	Technical Presentations	2

LIBERAL STUDIES

Code	Title	Credits
College of En	ngineering Liberal Studies Req	uirements
	quirements (http://guide.wisc.edu/ e/engineering/#requirementstext	
Total Credits	i	16

Students must take 16 credits that carry H, S, L, or Z breadth designators. These credits must fulfill the following subrequirements:

- A minimum of two courses from the same subject area (https:// registrar.wisc.edu/subjectareas/) (the description before the course number). At least one of these two courses must be designated as above the elementary level (I, A, or D) in the course listing.
- 2. A minimum of 6 credits designated as humanities (H, L, or Z in the course listing), and an additional minimum of 3 credits designated as social science (S or Z in the course listing). Foreign language courses count as H credits. Retroactive credits for language courses may not be used to meet the Liberal Studies credit requirement (they can be used for subrequirement 1 above).
- 3. At least 3 credits in courses designated as ethnic studies (lower case "e" in the course listing). These courses may help satisfy subrequirements 1 and 2 above, but they count only once toward the total required. *Note:* Some courses may have "e" designation but not H, S, L, or Z designation; these courses do not count toward the Liberal Studies requirement.

For information on credit load, adding or dropping courses, course substitutions, pass/fail, auditing courses, dean's honor list, repeating courses, probation, and graduation, see the College of Engineering Official Regulations (http://guide.wisc.edu/undergraduate/engineering/#policiesandregulationstext).

HONORS IN UNDERGRADUATE RESEARCH

Qualified undergraduates may earn an Honors in Research designation on their transcript and diploma by completing 8 credits of undergraduate honors research, including a senior thesis. Further information is available in the department office.

FOUR-YEAR PLAN

EXAMPLE FOUR YEAR PLAN

First Year

Fall	Credits Sp	oring	Credits
CHEM 109 ¹	5 E	M A 201 ³	3
MATH 221	5 M.	ATH 222	4
Commucations A	3 M	E 231	3
M E 201 ²	3 Lil or	peral Studies Elective	3
or Liberal Studies Elective	М	E 201 ²	3
	Lil	peral Studies Elective	3
	16		19

Second Year			
Fall	Credits	Spring	Credits
MATH 234	4	1 MATH 320	3
PHYSICS 202	5	Technical Elective	3
E M A 202 ⁴	3	3 M E 361	3
E P 271	3	B E M A 303 ⁴	3
E P D 275 or COM ARTS 105	2	2 E M A/M E 307 ⁴	1
		Liberal Studies Elective	3
	16		

Third Year			
Fall	Credits	Spring	Credits
E M A 506	3	E M A 545	3
E M A 405	3	INTEREGR 397	3
E M A 542	3	M E 364	3
M E 363 or CIV ENGR 310	3	STAT 324	3
MATH 321	3	Computing Elective	3
		Experimental Mechanics Course ⁵	3
	15		18

Fourth Year		
Fall	Credits Spring	Credits
E M A 469	3 E M A 56	-
E M A 521 ⁶	3 E M A 52	23 or 524 ⁷ 3
E C E 376 or PHYSICS 321	3 E M A/A 610, or 6	STRON 550, 3 42
E C E 332, M E 346, or M E 446	3 Tech Ele	ctive 2
Liberal Studies Elective	4 Liberal S	tudies Elective 3
	16	14

Total Credits 131

1

It is recommended that students take CHEM 109 Advanced General Chemistry for 5 credits. However, depending on their high school chemistry experience, students may substitute CHEM 103 General Chemistry I and CHEM 104 General Chemistry II for a total of 9 credits.

2

 $\mbox{M}\mbox{ E}$ 201 Introduction to Mechanical Engineering can be taken in first or second semester

3

Students may substitute PHYSICS 201 General Physics, 5 credits, for E M A 201 Statics, 3 credits, with the approval of their advisor.

4

After completing E M A 201 Statics, students may take E M A 202 Dynamics and E M A 303 Mechanics of Materials/E M A/M E 307 Mechanics of Materials Lab in either order or concurrently.

5

E M A 611 Advanced Mechanical Testing of Materials or E M A/M E 540 Experimental Vibration and Dynamic System Analysis or E M A/M E 570 Experimental Mechanics or E M A 522 Aerodynamics Lab. Note that E M A/M E 540 Experimental Vibration and Dynamic System Analysis and E M A/M E 570 Experimental Mechanics are typically offered in the fall. E M A 611 Advanced Mechanical Testing of Materials and E M A 522 Aerodynamics Lab are typically offered in the spring.

6

M E 563 Intermediate Fluid Dynamics may be substituted for E M A 521 Aerodynamics. Note that M E 563 Intermediate Fluid Dynamics is offered in the spring semester only.

7

E M A 523 Flight Dynamics and Control is offered in the Spring semester only. E M A 524 Rocket Propulsion is offered in the Fall semester only.