ENGINEERING PHYSICS, B.S.

As an engineering physics major, you'll dive into research alongside professors who work at the frontier of translating emerging science into novel technologies. With a curriculum designed specifically to launch your research career and a tight-knit community of scholars, you'll find a supportive environment to pursue a flexible math and physics-centered curriculum and publish an undergraduate thesis. The engineering physics major is ideal for students who are already thinking about graduate school and want the flexibility to design their undergraduate experience to support that goal—but it also prepares students to join high-tech startup companies developing new technologies.

Students choose from three flexible focus areas: nanoengineering, plasma science and engineering, and scientific computing, that include graduate-level courses and laboratory experiences. Students in nanoengineering take courses in physics, material science, engineering mechanics, and electrical engineering to learn how to design, build and use innovative devices and structures at the nanoscale. Plasma science and engineering students join one of the largest university plasma and fusion communities in the world, with collaborations between physics, electrical engineering, and nuclear engineering, and world-leading facilities. Scientific computing can be applied to nearly every discipline in science, combining modern computing practices with scientific discovery in research groups across campus.

As some of our best and brightest engineering students, EP majors move quickly through fundamental math and physics courses, opening the door for more advanced courses that support their research interests. With more flexibility than most engineering majors, each student works with their faculty advisor to find a selection of courses that is tuned to their specific research needs. The senior thesis is a defining aspect of this program, where students summarize their research findings and present them to a committee of professors, and possibly publish a paper in a scientific journal.

At the heart of the engineering physics program is a small learning community where students develop skills for conducting original research, with support from faculty and peers. The curriculum is designed to bring sophomores, juniors and seniors together in a community where younger students learn from the general research experiences of their more senior counterparts. In addition, every student joins a research group where graduate students, post-docs, scientists and faculty members support the specific skills and expertise needed for their research. Nearly all of our graduates go on to graduate degrees at the best universities in the US and around the world, and ultimately in careers in a variety of fields in academia, industry or national laboratories.

THE OBJECTIVES OF THE ENGINEERING PHYSICS PROGRAM ARE TO:

- Educate students to think and participate deeply, creatively, and analytically in emerging areas of engineering technology.
- Educate students in the basics of instrumentation, design of laboratory techniques, measurement, data acquisition, interpretation, and analysis.
- Educate students in the methodology of research.

- Provide and facilitate teamwork and multidisciplinary experiences throughout the curriculum.
- Foster the development of effective oral and written communication skills.
- Expose students to environmental, ethical and contemporary issues.

HOW TO GET IN

ADMISSION TO THE COLLEGE AS A FRESHMAN

Students applying to UW–Madison (https://www.admissions.wisc.edu/ apply/) need to indicate an engineering major (https:// engineering.wisc.edu/degrees-programs/undergraduate/) as their first choice in order to be considered for direct admission to the College of Engineering. Direct admission to a major means students will start in the program of their choice in the College of Engineering and will need to meet progression requirements (https://engineering.wisc.edu/studentservices/undergraduate-student-advising/progression/) at the end of the first year to guarantee advancement in that program.

CROSS-CAMPUS TRANSFER TO ENGINEERING

UW-Madison students in other schools and colleges on campus must meet minimum admission requirements (https://engineering.wisc.edu/ admissions/undergraduate/cross-campus-students/) for admission consideration to engineering degree granting classifications. Crosscampus admission is competitive and selective, and the grade point average expectations may increase as demand trends change. The student's overall academic record at UW-Madison is also considered. Students apply to their intended engineering program by submitting the online application by stated deadlines for spring and fall. The College of Engineering offers an online information tutorial and drop-in advising (https://engineering.wisc.edu/admissions/undergraduate/cross-campusstudents/) for students to learn about the cross-campus transfer process.

OFF-CAMPUS TRANSFER TO ENGINEERING

With careful planning, students at other accredited institutions can transfer coursework that will apply toward engineering degree requirements at UW–Madison. Off-campus transfer applicants are considered for direct admission to the College of Engineering by applying to the Office of Admissions with an engineering major listed as their first choice. Those who are admitted to their intended engineering program must meet progression requirements (https://engineering.wisc.edu/ admissions/undergraduate/transfer-from-off-campus/) at the point of transfer or within their first two semesters at UW–Madison to guarantee advancement in that program. A minimum of 30 credits in residence in the College of Engineering is required after transferring, and all students must meet all requirements for their major in the college. Transfer admission to the College of Engineering is competitive and selective, and students who have exceeded the 80 credit limit at the time of application are not eligible to apply.

The College of Engineering has dual degree programs with select fouryear UW System campuses. Eligible dual degree applicants are not subject to the 80 credit limit.

Off-campus transfer students are encouraged to discuss their interests, academic background, and admission options with the Transfer Coordinator in the College of Engineering: ugtransfer@engr.wisc.edu or 608-262-2473.

SECOND BACHELOR'S DEGREE

The College of Engineering does not accept second undergraduate degree applications. Second degree student (https:// engineering.wisc.edu/admissions/undergraduate/adult-students-second-degree-students/)s (https://engineering.wisc.edu/student-services/ undergraduate-student-advising/) might explore the Biological Systems Engineering program at UW-Madison, an undergraduate engineering degree elsewhere, or a graduate program in the College of Engineering.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/ #requirementsforundergraduatestudytext) section of the *Guide*.

General Education

- Breadth–Humanities/Literature/Arts: 6 credits
- Breadth–Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth–Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

SUMMARY OF REQUIREMENTS

The following curriculum applies to students who entered the program after fall 2018.

Code	Title	Credits
Mathematics and Sta	tistics	25
Science		28
Engineering Science		25
Focus Area		22
Technical Electives		6
Communication Skills	5	8
Liberal Studies		16
Total Credits		130

MATHEMATICS AND STATISTICS

Code	Title	Credits
MATH 221	Calculus and Analytic Geometry 1	5
or MATH 217	Calculus with Algebra and Trigonometry II	
or MATH 275		
MATH 222	Calculus and Analytic Geometry 2	4
or MATH 276		
MATH 234	CalculusFunctions of Several	4
	Variables	
MATH 319	Techniques in Ordinary Differential	3
	Equations	
MATH 321	Applied Mathematical Analysis	3
MATH 340	Elementary Matrix and Linear	3
	Algebra	
or MATH 341	Linear Algebra	
STAT 324	Introductory Applied Statistics for	3
	Engineers	
or STAT 311	Introduction to Theory and Methods of	
	Mathematical Statistics I	
or STAT/	Introduction to the Theory of Probability	
MATH 431		
Total Credits		25
SCIENCE		

Cradite

SCIENCE

Title

Code	Title	Credits
Select one of the follo	owing:	5-10
CHEM 109	Advanced General Chemistry	
CHEM 103	General Chemistry I	
& CHEM 104	and General Chemistry II	
PHYSICS 202	General Physics	5
or PHYSICS 208	General Physics	
PHYSICS 241	Introduction to Modern Physics	3
or PHYSICS 205	Modern Physics for Engineers	
PHYSICS 322	Electromagnetic Fields	3
E P 271	Engineering Problem Solving I	3
or COMP SCI 200	Programming I	
or COMP SCI 220	Data Science Programming I	
or COMP SCI 310	Problem Solving Using Computers	
M S & E 351	Materials Science-Structure and Property Relations in Solids	3
or CBE 440	Chemical Engineering Materials	
N E 305	Fundamentals of Nuclear Engineering	3
or PHYSICS 531	Introduction to Quantum Mechanics	
Computing Elective (3
COMP SCI 300	Programming II	5
COMP SCI 412	Introduction to Numerical Methods	
001011 301 412	(required for students in Scientific	
	Computing Focus Area)	
E P/E M A 471	Intermediate Problem Solving for	
	Engineers	

....

E P/E M A 476 Introduction to Scientific Computing for Engineering Physics	28-33
	28-33
Total Credits	
ENGINEERING SCIENCE	
Code Title	Credits
E M A 201 Statics	3
or PHYSICS 201 General Physics	
or PHYSICS 207 General Physics	
PHYSICS 311 Mechanics	3
or E M A 202 Dynamics	
or M E 240 Dynamics	
E M A 303 Mechanics of Materials	3
or M E 306 Mechanics of Materials	
EMA/ME 307 Mechanics of Materials Lab	1
M E 361 Thermodynamics	3
or M S & E 330 Thermodynamics of Materials	
E C E 376 Electrical and Electronic Circuits	3
or PHYSICS 321 Electric Circuits and Electronics	
M E 363 Fluid Dynamics	3
M E 364 Elementary Heat Transfer	3
or M S & E 331 Transport Phenomena in Materials	

Total Credits

N E 231

1

This requirement can also be satisfied with a different introductory engineering course

Introduction to Nuclear Engineering

FOCUS AREA

Research and Development/Senior Thesis Expectations for Research Projects

Completion of the engineering physics degree program requires satisfactory completion of the E P 468 Introduction to Engineering Research, E P 469 Research Proposal in Engineering Physics, E P 568 Research Practicum in Engineering Physics I, and E P 569 Research Practicum in Engineering Physics II coursework sequence, which culminates in a senior research thesis. The research topic chosen by the student and agreed upon by the advisor should be on a topic connected to the chosen Focus Area. The research conducted should be such that the student participates in the creation of new knowledge, experiences the excitement of the research process, and makes a contribution so that it would be appropriate to include the student's name on a scholarly publication if one results from the research.

Senior Thesis

A senior thesis, completed during enrollment in E P 569 Research Practicum in Engineering Physics II is required. The senior thesis is a written document reporting on a substantial piece of work. It should be written in the style of a graduate thesis. The faculty advisor, in consultation with a research mentor, determines the grade which the student receives for the thesis. A bound copy of the thesis must be submitted to the engineering physics department office.

On or before the Friday of finals week of the semester in which E P 569 Research Practicum in Engineering Physics II is taken, the senior thesis must be presented orally by the student to a committee of three professors in a publicly announced seminar. Interested faculty and students will be invited to attend.

Research ar	d Development	
Code	Title	Credits
Research and Develo	oment	8
E P 468	Introduction to Engineering Research	1
E P 469	Research Proposal in Engineering Physics	1
E P 568	Research Practicum in Engineering Physics I	3
E P 569	Research Practicum in Engineering Physics II	3

Focus Area Electives Nanoengineering

3

25

Code	Title	Credits
Focus Area Total Cree	dits:	14
Required:		
PHYSICS 551	Solid State Physics	3
At Least One of:		
E P/E M A 615	Micro- and Nanoscale Mechanics	3
M S & E 553	Nanomaterials & Nanotechnology	3
At Least One of:		
E M A 506	Advanced Mechanics of Materials I	3
E M A 622	Mechanics of Continua	3
E M A 519	Fracture Mechanics	3
At Least One of:		
M S & E 448	Crystallography and X-Ray Diffraction	3
E M A 611	Advanced Mechanical Testing of Materials	3
M E 601	Special Topics in Mechanical Engineering (Micro & Nano Fabrication)	1-3
N E 602	Special Topics in Reactor Engineering (Vacuum Technology Lab)	0-3
PHYSICS 623	Electronic Aids to Measurement	4
PHYSICS 625	Applied Optics	4
M S & E 748	Structural Analysis of Materials	3
Open Electives:		
M S & E 333	Microprocessing of Materials	3
E C E 335	Microelectronic Devices	3
M S & E 434	Introduction to Thin-Film Deposition Processes	3
M S & E 441	Deformation of Solids	3
E C E 445	Semiconductor Physics and Devices	3
M S & E 451	Introduction to Ceramic Materials	3
EMA/MS&E 541	Heterogeneous and Multiphase Materials	3
M S & E 560	Fundamentals of Atomistic Modeling	3
M S & E 570	Properties of Solid Surfaces	3
CHEM 630	Selected Topics in Analytical Chemistry	1-3

M S & E 756	Structure and Properties of Advanced Electronic Materials	3
Plasma Scie Code	nce and Engineering Title	Credits
Focus Area Total Cred	dits:	14
Required:		
N E/E C E/ PHYSICS 525	Introduction to Plasmas	3
At Least One of:		
N E/E C E/ PHYSICS 527	Plasma Confinement and Heating	3
N E/E C E 528	Plasma Processing and Technology	3
At Least One of:		
N E 526	Laboratory Course in Plasmas	3
Open Electives:		
N E 408	Ionizing Radiation	3
N E 536	Feasibility St of Power from Controlled Thermonuclear Fusion	3
Any plasma-related s	pecial topics course in NE	
PHYSICS 415	Thermal Physics	3
PHYSICS 623	Electronic Aids to Measurement	4
PHYSICS 625	Applied Optics	4
N E/E C E/ PHYSICS 724	Waves and Instabilities in Plasmas	3
N E/E C E/ PHYSICS 725	Plasma Kinetic Theory and Radiation Processes	3
N E/E C E/ PHYSICS 726	Plasma Magnetohydrodynamics	3

Scientific Computing

Code	Title	Credits
Focus Area Total Cre	dits:	14
At Least One of:		
N E/MED PHYS 500	6 Monte Carlo Radiation Transport	3
M E 573	Computational Fluid Dynamics	3
E M A 605	Introduction to Finite Elements	3
E C E 742	Computational Methods in Electromagnetics	3

At Least One of:

Students must take at least two credits of laboratory experience in the Physical or Biological Sciences beyond the required chemistry and mechanics of materials courses

Open Electives:

open Erectiveer		
E P/E M A 476	Introduction to Scientific Computing for Engineering Physics	3
COMP SCI 300	Programming II	3
Comp SCI/ Math 513	Numerical Linear Algebra	3
COMP SCI/ MATH 514	Numerical Analysis	3
COMP SCI/I SY E/ MATH/STAT 525	Linear Optimization	3
COMP SCI/E C E/ M E 532	Matrix Methods in Machine Learning	3

COMP SCI/E C E/ M E 539	Introduction to Artificial Neural Networks	3
COMP SCI 540	Introduction to Artificial Intelligence	3
COMP SCI/ E C E 561	Probability and Information Theory in Machine Learning	3
COMP SCI 577	Introduction to Algorithms	4
COMP SCI/ MATH 714	Methods of Computational Mathematics I	3
COMP SCI/ MATH 715	Methods of Computational Mathematics II	3
M S & E 560	Fundamentals of Atomistic Modeling	3
M E 459	Computing Concepts for Applications in Engineering	3
M E/COMP SCI/ E C E/E M A/ E P 759	High Performance Computing for Applications in Engineering	3
Any scientific-comp	uting-related special topics course in	

NE

TECHNICAL ELECTIVE

C	ode Title	Credits
Se	elect 6 credits from:	6
	Co-op (no more than 3 credits)	
	Courses numbered 300+ in the CoE except for E P D/ INTEREGR	
	Courses numbered 300+ in MATH, PHYSICS, COMP SCI, STAT (except STAT 301), ASTRON, MED PHYS, and CHEM departments	
	Students may also propose any class that they feel will benefit their education path with pre-requisite of two physics or calculus classes. For these courses the advisor will review the request and if approved,	

recommend a DARS substitution.

COMMUNICATION SKILLS

Code	Title	Credits
ENGL 100	Introduction to College Composition	3
or COM ARTS 100	Introduction to Speech Composition	
or LSC 100	Science and Storytelling	
or ESL 118	Academic Writing II	
E P D 275	Technical Presentations	2
INTEREGR 397	Engineering Communication	3
Total Credits		8

LIBERAL STUDIES

Code

Title Credits Complete Requirements (http://guide.wisc.edu/

undergraduate/engineering/#requirementstext)¹

Students must take 16 credits that carry H, S, L, or Z breadth designators. These credits must fulfill the following subrequirements:

- A minimum of two courses from the same subject area (https:// registrar.wisc.edu/subjectareas/) (the description before the course number). At least one of these two courses must be designated as above the elementary level (I, A, or D) in the course listing.
- 2. A minimum of 6 credits designated as humanities (H, L, or Z in the course listing), and an additional minimum of 3 credits designated as social science (S or Z in the course listing). Foreign language courses count as H credits. Retroactive credits for language courses may not be used to meet the Liberal Studies credit requirement (they can be used for subrequirement 1 above).
- 3. At least 3 credits in courses designated as ethnic studies (lower case "e" in the course listing). These courses may help satisfy subrequirements 1 and 2 above, but they only count once toward the total required. Note: Some courses may have "e" designation but not have H, S, L, or Z designation; these courses do not count toward the Liberal Studies requirement.

TOTAL CREDITS: 130-132

For information on credit load, adding or dropping courses, course substitutions, pass/fail, auditing courses, dean's honor list, repeating courses, probation, and graduation, see the College of Engineering Official Regulations (http://guide.wisc.edu/undergraduate/engineering/ #policiesandregulationstext).

UNIVERSITY DEGREE REQUIREMENTS

Total Degree To receive a bachelor's degree from UW-Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements Residency Degree candidates are required to earn a minimum of 30 credits in residence at UW-Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. "In residence" credit also includes UW-Madison courses offered in distance or online formats and credits earned in UW-Madison Study Abroad/Study Away programs. Quality of Undergraduate students must maintain the minimum grade Work point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

EARNING OUTCOMES

- an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- an ability to apply engineering research practices to produce results that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- 3. an ability to communicate effectively with a range of audiences

- an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6. an ability to apply experimental, theoretical, and computational methods to address scientific and engineering objectives
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

First Year			
Fall	Credits	Spring	Credits
CHEM 109 ¹		5 E M A 201 or PHYSICS 201	3-5
MATH 221		5 MATH 222	4
Communications A		3 N E 231 ²	3
N E 231 ²		3 or Liberal Studies Elective	
or Liberal Studies Elective		STAT 324	3
	1	16	13-15
Second Year			
Fall	Credits	Spring	Credits
E P 468 ³		1 MATH 319	3
MATH 234		4 PHYSICS 205 or 241	3
PHYSICS 202		5 E M A 202 or PHYSICS 311	3
M S & E 351		3 E M A 303	3
E P D 275		2 E M A/M E 307	1
E P 271		3 Liberal Studies Elective	3
	1	18	16
Third Year			
Fall	Credits	Spring	Credits
N E 305 ⁵		3 PHYSICS 531 ⁵	3
or Technical Elective		or Technical Elective	
MATH 321		3 MATH 340 or 341	3
M E 361 or M S & E 330	3-	-4 Liberal Studies Elective	4
PHYSICS 322 ⁴		3 Advanced Computer	3
		Science	5
E C E 376 or PHYSICS 321	3-	1	3
	3-	Science	-
321	3- 16- 1	Science 4 E P Focus Area Course 1	-
321		Science 4 E P Focus Area Course 1	3
321 E P 469	16-1	Science 4 E P Focus Area Course 1	3
321 E P 469 Fourth Year	16-1	Science 4 E P Focus Area Course 1 8	3
321 E P 469 Fourth Year Fall	16-1	Science 4 E P Focus Area Course 1 1 18 Spring	3 16 Credits
321 E P 469 Fourth Year Fall E P 568	16-1	Science 4 E P Focus Area Course 1 1 8 Spring 3 E P 569	3 16 Credits 3

1

18		
Liberal Studies Elective	3 Liberal Studies Elective	3
Technical Elective	3 INTEREGR 397	3

Total Credits 130-134

1

It is recommended that students take CHEM 109 Advanced General Chemistry for 5 credits. However, depending on their high school chemistry experience, students may substitute this with CHEM 103 General Chemistry I and CHEM 104 General Chemistry II for a total of 9 credits.

2

Students who were not able to take an introductory engineering course as freshmen may, with the approval of their advisor, substitute a course offered in the College of Engineering or in the departments of Chemistry, Computer Sciences, Mathematics, and Physics.

3

Students are encouraged to take E P 468 Introduction to Engineering Research during their second year to allow for more flexibility in the research sequence.

4

Topics from MATH 321 Applied Mathematical Analysis are applied in PHYSICS 322 Electromagnetic Fields, and some students may find it helpful to take PHYSICS 322 Electromagnetic Fields after MATH 321 Applied Mathematical Analysis if PHYSICS 322 Electromagnetic Fields is not required for focus area courses.

5

Students in the nanoengineering focus area should take PHYSICS 531 Introduction to Quantum Mechanics.

ADVISING AND CAREERS

ADVISING

Each College of Engineering program has academic advisors dedicated to serving its students. Program advisors can help current College of Engineering students with questions about accessing courses, navigating degree requirements, resolving academic issues and more. Students can find their assigned advisor on the homepage of their student center.

Continuing students who have fulfilled the progression requirements will also be assigned an Engineering Physics faculty advisor. Before enrolling in courses each semester, students must meet with their faculty advisor for assistance in planning courses and reviewing degree requirements. Faculty advisors are a valuable resource, as they can provide students with in-depth guidance on course content, internship and job opportunities, research, and more.

ENGINEERING CAREER SERVICES

Engineering Career Services (ECS) assists students in identifying preprofessional work-based learning experiences such as co-ops and summer internships, considering and applying to graduate or professional school, and finding full-time professional employment during their graduation year.

ECS offers two major career fairs per year, assists with resume writing and interviewing skills, hosts workshops on the job search, and meets one-on-one with students to discuss offer negotiations.

Students are encouraged to utilize the ECS office early in their academic careers. For comprehensive information on ECS programs and workshops, see the ECS website or call 608-262-3471.

PEOPLE

PROFESSORS

Paul Wilson (Chair) Wendy Crone Chris Hegna Oliver Schmitz Carl Sovinec Kumar Sridharan

ASSOCIATE PROFESSORS

Adrien Couet

ASSISTANT PROFESSORS

Stephanie Diem Juliana Pacheco Duarte Benedikt Geiger Ben Lindley Yongfeng Zhang

See also Nuclear Engineering & Engineering Physics Faculty Directory (https://directory.engr.wisc.edu/neep/faculty/).

RESOURCES AND SCHOLARSHIPS

FACILITIES

Facilities available for instruction and research include:

Fluid Mechanics and Heat Transfer Laboratories Instructional Computing Labs (in Computer Aided Engineering) Nanomechanics Laboratory Nuclear Instrumentation Laboratory Plasma Physics Laboratories Superconductivity and Cryogenics Laboratories

SCHOLARSHIPS

The Department of Nuclear Engineering & Engineering Physics and the College of Engineering have several types of scholarships available to incoming and current engineering students. Students should explore the Wisconsin Scholarship Hub (WiSH), where you can apply to and find specific information on scholarships at UW-Madison. You can use WiSH to find engineering scholarships available through the College of Engineering; the Inclusion, Equity, and Diversity in Engineering Student Center; the Nuclear Engineering & Engineering Physics Department; and other UW and external organizations. (Please note: students must be currently enrolled in, or have applied to, the College of Engineering to be considered for engineering scholarships.) To be matched with these available scholarship funds an application is required and the system is typically open to students in the spring of each year. Questions on the process can be directed to: coescholarships@engr.wisc.edu. Additional financial assistance may be awarded through the Office of Student Financial Aid (333 E. Campus Mall RM 9701, 262-3060).