ATMOSPHERIC AND OCEANIC SCIENCES, B.A.

The study of atmospheric and oceanic sciences includes all aspects of the atmosphere and physical oceanography, their mutual interaction, and their interaction with space and the rest of the earth system. Although a primary goal is to understand the atmosphere and ocean for the purpose of predicting the weather, atmospheric and oceanic sciences embraces much more: motions at large, medium, and small scales; past, present, and future climates; air chemistry and quality; clouds and precipitation; and solar and terrestrial radiation. In many areas, new remote-sensing technology including satellites is used to provide circulation patterns at both global and local scales.

Many undergraduates take an elementary atmospheric and oceanic sciences course to meet part of their natural or physical science breadth requirements. Other students, who have had sufficient mathematics and physics preparation, take higher-level atmospheric and oceanic sciences courses to complement their major work in other fields of natural science. An atmospheric and oceanic sciences major receives a thorough introduction to the basic concepts and tools in the core courses, which cover the physics and dynamics of the atmosphere and ocean. An array of elective courses are offered in the senior year, with tracks in the areas of weather systems, earth/environmental science, and general and applied atmospheric and oceanic sciences. Elective groups are tailored individually. Some students will want preparation for careers in areas such as operational forecasting, environmental consulting, and broadcasting. Others will seek preparation for graduate work leading to a broader range of careers.

HOW TO GET IN

Because atmospheric and oceanic sciences involves applying the principles and techniques of physical science to the fluid atmosphere and ocean, a strong background in mathematics, and physics is necessary. Admission to the atmospheric and oceanic sciences major requires a combined grade point average of 2.250 or better in the following courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Calculus and Analytic Geometry 1</td>
<td>5</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus and Analytic Geometry 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 234</td>
<td>Calculus–Functions of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 207</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>or PHYSICS 201</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>or PHYSICS 247</td>
<td>A Modern Introduction to Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 208</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>or PHYSICS 202</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>or PHYSICS 248</td>
<td>A Modern Introduction to Physics</td>
<td></td>
</tr>
</tbody>
</table>

Computer Sciences (complete one):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 220</td>
<td>Data Programming I</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 310</td>
<td>Problem Solving Using Computers</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 320</td>
<td>Data Programming II</td>
<td></td>
</tr>
</tbody>
</table>

Students may declare by speaking with the undergraduate advisor.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatesstudystext) section of the Guide.

General Education

- Breadth—Humanities/Literature/Arts: 6 credits
- Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth—Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

COLLEGE OF LETTERS & SCIENCE

BREADTH AND DEGREE REQUIREMENTS: BACHELOR OF ARTS (B.A.)

Students pursuing a bachelor of arts degree in the College of Letters & Science must complete all of the requirements below. The College of Letters & Science allows this major to be paired with either a bachelor of arts or a bachelor of science curriculum. View a comparison of the degree requirements here. (https://pubs.wisc.edu/home/archives/ug15/images/babs2009.pdf)

BACHELOR OF ARTS DEGREE REQUIREMENTS

Mathematics

Fulfilled with completion of University General Education requirements Quantitative Reasoning a (QR A) and Quantitative Reasoning b (QR B) coursework. Please note that some majors may require students to complete additional math coursework beyond the B.A. mathematics requirement.

**COMMENTS**

- **Mathematics**: Fulfilled with completion of University General Education requirements Quantitative Reasoning a (QR A) and Quantitative Reasoning b (QR B) coursework. Please note that some majors may require students to complete additional math coursework.

**COMMENTS**

- **Computer Sciences**: Complete one course.

**COMMENTS**

- **Electives**: Students may declare by speaking with the undergraduate advisor.

**COMMENTS**

- **General Education**: Fulfilled with completion of General Education requirements.

**COMMENTS**

- **University General Education**: Fulfilled with completion of University General Education requirements.

**COMMENTS**

- **College of Letters & Science**: Fulfilled with completion of College of Letters & Science requirements.

**COMMENTS**

- **Bachelor of Arts Degree Requirements**: Fulfilled with completion of Bachelor of Arts Degree Requirements.
Foreign Language
- Complete the fourth unit of a foreign language; OR
- Complete the third unit of a foreign language and the second unit of an additional foreign language.

Note: A unit is one year of high school work or one semester/term of college work.

L&S Breadth
- Humanities, 12 credits: 6 of the 12 credits must be in literature.
- Social Sciences, 12 credits.
- Natural Sciences, 12 credits: must include one 3+ credit course in the biological sciences; must include one 3+ credit course in the physical sciences.

Liberal Arts and Science Coursework
- Depth of Intermediate/Advanced work: 60 intermediate or advanced credits.

Major
- Declare and complete at least one (1) major.

Total Credits
- 120 credits
- UW-Madison Experience: 30 credits in residence, overall.
- Minimum GPAs: 2.000 in all coursework at UW–Madison.

NON–L&S STUDENTS PURSUING AN L&S MAJOR
Non–L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements and do not need to complete the L&S breadth and degree requirements above. Please note that the following special degree programs are not considered majors so are not available to non–L&S degree-seeking candidates:
- Applied Mathematics, Engineering and Physics (Bachelor of Science–Applied Mathematics, Engineering and Physics)
- Journalism (Bachelor of Arts–Journalism; Bachelor of Science–Journalism)
- Music (Bachelor of Music)
- Social Work (Bachelor of Social Work)

REQUIREMENTS FOR THE MAJOR

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Calculus and Analytic Geometry 1</td>
<td>5</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus and Analytic Geometry 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 234</td>
<td>Calculus—Functions of Several Variables</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 207</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 247</td>
<td>A Modern Introduction to Physics</td>
<td></td>
</tr>
</tbody>
</table>

or PHYSICS 202  General Physics  5

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM OCN 310</td>
<td>Dynamics of the Atmosphere and Ocean I</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 311</td>
<td>Dynamics of the Atmosphere and Ocean II</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 330</td>
<td>Physics of the Atmosphere and Ocean I</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 340</td>
<td>Physics of the Atmosphere and Ocean II</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 220</td>
<td>Data Programming I</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 310</td>
<td>Problem Solving Using Computers</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 320</td>
<td>Data Programming II</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/ ECE 354</td>
<td>Machine Organization and Programming</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 412</td>
<td>Introduction to Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E/ MATH 425</td>
<td>Introduction to Combinatorial Optimization</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 26

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM OCN 310</td>
<td>Dynamics of the Atmosphere and Ocean I</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 311</td>
<td>Dynamics of the Atmosphere and Ocean II</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 330</td>
<td>Physics of the Atmosphere and Ocean I</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 340</td>
<td>Physics of the Atmosphere and Ocean II</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 412</td>
<td>Introduction to Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/MATH/STAT 475</td>
<td>Introduction to Combinatorics</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/ MATH 514</td>
<td>Numerical Analysis</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/ MATH 309</td>
<td>Introduction to Probability and Mathematical Statistics II</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E/ MATH/STAT 525</td>
<td>Linear Optimization</td>
<td></td>
</tr>
<tr>
<td>MATH 319</td>
<td>Techniques in Ordinary Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 320</td>
<td>Linear Algebra and Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 321</td>
<td>Applied Mathematical Analysis</td>
<td></td>
</tr>
<tr>
<td>MATH 322</td>
<td>Applied Mathematical Analysis</td>
<td></td>
</tr>
<tr>
<td>MATH 331</td>
<td>An Introduction to Probability and Markov Chain Models</td>
<td></td>
</tr>
<tr>
<td>MATH 340</td>
<td>Elementary Matrix and Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 341</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 375</td>
<td>Topics in Multi-Variable Calculus and Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 376</td>
<td>Topics in Multi-Variable Calculus and Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 407</td>
<td>Topics in Mathematics Study Abroad</td>
<td></td>
</tr>
<tr>
<td>MATH 415</td>
<td>Applied Dynamical Systems, Chaos and Modeling</td>
<td></td>
</tr>
<tr>
<td>MATH 421</td>
<td>The Theory of Single Variable Calculus</td>
<td></td>
</tr>
</tbody>
</table>
MATH/COMP SCI/ I SY E 425 Introduction to Combinatorial Optimization
MATH/STAT 431 Introduction to the Theory of Probability
MATH/COMP SCI/ E C E 435 Introduction to Cryptography
MATH 441 Introduction to Modern Algebra
MATH 443 Applied Linear Algebra
MATH 461 College Geometry I
MATH 467 Introduction to Number Theory
MATH/ CURRIC 471 Mathematics for Secondary School Teachers
MATH/ HIST SCI 473 History of Mathematics
MATH/COMP SCI/ STAT 475 Introduction to Combinatorics
MATH 490 Undergraduate Seminar
MATH 491 Topics in Undergraduate Mathematics
MATH/ COMP SCI 513 Numerical Linear Algebra
MATH/ COMP SCI 514 Numerical Analysis
MATH 519 Ordinary Differential Equations
MATH 521 Analysis I
MATH 522 Analysis II
MATH/COMP SCI/ I SY E/STAT 525 Linear Optimization
MATH 531 Probability Theory
MATH 535 Mathematical Methods in Data Science
MATH 540 Linear Algebra II
MATH 541 Modern Algebra
MATH 542 Modern Algebra
MATH 551 Elementary Topology
MATH 552 Elementary Geometric and Algebraic Topology
MATH 561 Differential Geometry
MATH 567 Modern Number Theory
MATH 570 Fundamentals of Set Theory
MATH/ PHILOS 571 Mathematical Logic
MATH 605 Stochastic Methods for Biology
MATH/B M I/ BIOCHEM/ BMOLCHEM 606 Mathematical Methods for Structural Biology
MATH 607 Topics in Mathematics Study Abroad
MATH 608 Mathematical Methods for Continuum Modeling in Biology
MATH/B M I/ BIOCHEM/ BMOLCHEM 609 Mathematical Methods for Systems Biology
MATH 619 Analysis of Partial Differential Equations
MATH 621 Analysis III
MATH 623 Complex Analysis
MATH 627 Introduction to Fourier Analysis
MATH 629 Introduction to Measure and Integration
MATH/I SY E/ OTM/STAT 632 Introduction to Stochastic Processes
STAT/MATH 309 Introduction to Probability and Mathematical Statistics I
STAT/MATH 310 Introduction to Probability and Mathematical Statistics II
STAT 311 Introduction to Theory and Methods of Mathematical Statistics I
STAT 312 Introduction to Theory and Methods of Mathematical Statistics II
STAT 324 Introductory Applied Statistics for Engineers
STAT 327 Learning a Statistical Language
STAT 333 Applied Regression Analysis
STAT 340 Introduction to Data Modeling II
STAT 349 Introduction to Time Series
STAT 351 Introductory Nonparametric Statistics
STAT 360 Topics in Statistics Study Abroad
STAT 371 Introductory Applied Statistics for the Life Sciences
STAT 411 An Introduction to Sample Survey Theory and Methods
STAT 421 Applied Categorical Data Analysis
STAT/M E 424 Statistical Experimental Design
STAT/MATH 431 Introduction to the Theory of Probability
STAT 456 Applied Multivariate Analysis
STAT 461 Financial Statistics
STAT/ COMP SCI 471 Introduction to Computational Statistics
STAT/COMP SCI/ MATH 475 Introduction to Combinatorics
STAT 479 Special Topics in Statistics
STAT 511
STAT/COMP SCI/ I SY E/MATH 525 Linear Optimization
STAT/B M I 541 Introduction to Biostatistics
STAT/B M I 542 Introduction to Clinical Trials I
STAT/B M I 546 Practicum in Clinical Trial Data Analysis and Interpretation
STAT/F&W ECOL/ HORT 571 Statistical Methods for Bioscience I
STAT/F&W ECOL/ HORT 572 Statistical Methods for Bioscience II
STAT 575 Statistical Methods for Spatial Data
STAT 601 Statistical Methods I
STAT 602 Statistical Methods II
STAT 605 Data Science Computing Project
STAT 609 Mathematical Statistics I
### ATM OCN 610 Introduction to Statistical Inference

### ATM OCN 615 Statistical Learning

### ATM OCN 627 Professional Skills in Data Science

### ATM OCN 628 Data Science Practicum

### ATM OCN I/SY/E/MATH/OTM 632 Introduction to Stochastic Processes

### ATM OCN/BM/ 641 Statistical Methods for Clinical Trials

### ATM OCN/BM/ 642 Statistical Methods for Epidemiology

### ATM OCN 679 Special Topics in Statistics

### ATM OCN 681 Senior Honors Thesis

### ATM OCN 682 Senior Honors Thesis

### ATM OCN 698 Directed Study

### ATM OCN 699 Directed Study

**Total Credits:** 27

---

### RESIDENCE AND QUALITY OF WORK

- 2.000 GPA in all ATM OCN and major courses
- 2.000 GPA on 15 upper-level credits in the major, taken in Residence
- 15 credits in ATM OCN, taken on campus

---

### HONORS IN THE MAJOR

Students may declare Honors in the Atmospheric and Oceanic Sciences Major in consultation with the Atmospheric and Oceanic Sciences undergraduate advisor.

### REQUIREMENTS

To earn Honors in the Major in Atmospheric and Oceanic Sciences, students must satisfy both the requirements for the major (above) and the following additional requirements:

- Earn a 3.300 University GPA
- Earn a 3.400 GPA for all ATM OCN courses, and all courses accepted in the major
- Complete the following additional coursework:
  - ATM OCN 610 or ATM OCN 611
  - ATM OCN 681 and ATM OCN 682 for a total of 6 credits

---

### FOOTNOTES

1. Note that core sequence begins in the fall semester only.

2. A maximum 2 credits of Electives may come from Internship or Directed Study courses.

3. ATM OCN 300 through ATM OCN 699 are upper-level in the major.

---

### UNIVERSITY DEGREE REQUIREMENTS

**Total Degree**

To receive a bachelor’s degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

**Residency**

Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. "In residence" credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.
Quality of Work: Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES

1. Recognize and describe the fundamental principles and processes associated with the dynamics and thermodynamics of geophysical fluid flows, the basic physics of clouds, aerosols, and precipitation.
2. Recognize and describe the fundamental principles and processes associated with radiation and atmospheric and oceanic radiative transfer.
3. Demonstrate critical thinking skills by identifying a problem, identifying the required information to solve that problem; and formulating and interpreting solutions to that problem using appropriate analytical and/or computational techniques.
4. Apply diagnostic tools to to analyses and numerical model output to diagnose, describe, and interpret the fundamental dynamical and thermodynamical processes at work in synoptic-scale, mesoscale, and large-scale weather systems and climate circulations.
5. Apply fundamental radiative transfer theory to interpret remotely-sensed observations of atmospheric and oceanic phenomena.
6. Design and conduct experiments and/or analyze data to test hypotheses in an area of atmospheric or climate sciences.
7. Demonstrate effective scientific communication skills through development and delivery of oral presentations (including poster presentations) and written reports and case studies.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

This Sample Four-Year Plan is a tool to assist students and their advisor(s). Students should use it—along with their DARS report, the Degree Planner, and Course Search & Enroll tools—to make their own four-year plan based on their placement scores, credit for transferred courses and approved examinations, and individual interests. As students become involved in athletics, honors, research, student organizations, study abroad, volunteer experiences, and/or work, they might adjust the order of their courses to accommodate these experiences. Students will likely revise their own four-year plan several times during college.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221 (QR-B)</td>
<td>5</td>
<td>MATH 222</td>
<td>4</td>
</tr>
<tr>
<td>ATM OCN 100 or 101</td>
<td>4</td>
<td>ATM OCN/ENVIR ST 171 (Comm B)</td>
<td>3</td>
</tr>
<tr>
<td>Communication A</td>
<td>3</td>
<td>Literature Breadth</td>
<td>3</td>
</tr>
<tr>
<td>Foreign Language</td>
<td>4</td>
<td>Biological Science Breadth</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 234</td>
<td>4</td>
<td>Humanities Breadth</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 207</td>
<td>5</td>
<td>PHYSICS 208</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Biological Science Breadth | 3 COMP SCI 220 | 4 |
| Ethnic Studies             | 4 Social Science Breadth | 3 |
|                           | 16         | 15 |

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM OCN 310</td>
<td>3</td>
<td>ATM OCN 311</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 330</td>
<td>3</td>
<td>ATM OCN 340</td>
<td>3</td>
</tr>
<tr>
<td>Literature Breadth</td>
<td>3</td>
<td>Biological Science Breadth</td>
<td>3</td>
</tr>
<tr>
<td>ADV MATH/COMP SCI/STATS</td>
<td>3</td>
<td>Humanities Breadth</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Breadth</td>
<td>4</td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM OCN 400 or higher</td>
<td>3</td>
<td>ATM OCN numbered 400 or higher</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 400 or higher</td>
<td>4</td>
<td>ATM OCN numbered 400 level or higher</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
<td>ATM OCN 699 (or elective)</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Breadth</td>
<td>4</td>
<td>ATM OCN 405 Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Total Credits 120

ADVISING AND CAREERS

GENERAL ADVISING

Any student interested in the atmospheric and oceanic sciences major should meet with the AOS undergraduate advisor, Eric Schueffner, to discuss steps to complete the necessary prerequisite coursework for the major. Eric can be reached at 608-890-3231 or elschueffner@wisc.edu. A Major Declaration Form must be completed by the student and authorized by Professor Michael Morgan to complete the major declaration process. Professor Morgan can be reached at 608-265-8159 or mcmorgan@wisc.edu. Students should bring a current DARS report to their individual advising appointment.

CAREER ADVISING

The Department of Atmospheric and Oceanic Sciences encourages majors to begin working on their career exploration and preparation soon after arriving on campus. We partner with SuccessWorks at the College of Letters & Science. L&S graduates are in high demand by employers and graduate programs. It is important that students are career ready at the time of graduation, and we are committed to your success.

L&S CAREER RESOURCES

SuccessWorks at the College of Letters & Science helps students leverage the academic skills learned in their major, certificates, and liberal arts degree; explore and try out different career paths; participate in internships; prepare for the job search and/or graduate school applications; and network with professionals in the field (alumni and employers). In short, SuccessWorks helps students in the College of...
Letters & Science discover themselves, find opportunities, and develop the skills they need for success after graduation.

SuccessWorks can also assist students in career advising, résumé and cover letter writing, networking opportunities, and interview skills, as well as course offerings for undergraduates to begin their career exploration early in their undergraduate career.

Students should set up their profiles in Handshake (https://careers.ls.wisc.edu/handshake/) to take care of everything they need to explore career events, manage their campus interviews, and apply to jobs and internships from 200,000+ employers around the country.

- SuccessWorks (https://careers.ls.wisc.edu/)
- Set up a career advising appointment (https://careers.ls.wisc.edu/make-an-appointment/)
- INTER-LS 210 L&S Career Development: Taking Initiative (1 credit, targeted to first- and second-year students)—for more information, see Inter-LS 210: Career Development, Taking Initiative (https://careers.ls.wisc.edu/inter-ls-210-career-development-taking-initiative/)
- INTER-LS 215 Communicating About Careers (3 credits, fulfills Com B General Education Requirement)
- Handshake (https://careers.ls.wisc.edu/handshake/)
- Learn how we're transforming career preparation: L&S Career Initiative (http://ls.wisc.edu/lsci/)

PEOPLE

PROFESSORS
Ackerman, Steve
Desai, Ankur
Hitchman, Matt
Holloway, Tracey
Martin, Jonathan
Morgan, Morgan
Petty, Grant
Pierce, Brad
Tripoli, Greg (chair)
Vimont, Dan

ASSOCIATE PROFESSORS
Back, Larissa
L’Ecuyer, Tristan

ASSISTANT PROFESSORS
Adames-Coraliza, Angel
Henderson, Stephanie
Maroon, Elizabeth
Rowe, Angela