LEARNING OUTCOMES

1. Recognize and describe the fundamental principles and processes associated with the dynamics and thermodynamics of geophysical fluid flows, the basic physics of clouds, aerosols, and precipitation.

2. Recognize and describe the fundamental principles and processes associated with radiation and atmospheric and oceanic radiative transfer.

3. Demonstrate critical thinking skills by identifying a problem, identifying the required information to solve that problem; and formulating and interpreting solutions to that problem using appropriate analytical and/or computational techniques.

4. Apply diagnostic tools to analyses and numerical model output to diagnose, describe, and interpret the fundamental dynamical and thermodynamical processes at work in synoptic-scale, mesoscale, and large-scale weather systems and climate circulations.

5. Apply fundamental radiative transfer theory to interpret remotely-sensed observations of atmospheric and oceanic phenomena.

6. Design and conduct experiments and/or analyze data to test hypotheses in an area of atmospheric or climate sciences.

7. Demonstrate effective scientific communication skills through development and delivery of oral presentations (including poster presentations) and written reports and case studies.