The study of atmospheric and oceanic sciences includes all aspects of the atmosphere and physical oceanography, their mutual interaction, and their interaction with space and the rest of the earth system. Although a primary goal is to understand the atmosphere and ocean for the purpose of predicting the weather, atmospheric and oceanic sciences embraces much more: motions at large, medium, and small scales; past, present, and future climates; air chemistry and quality; clouds and precipitation; and solar and terrestrial radiation. In many areas, new remote-sensing technology including satellites is used to provide circulation patterns at both global and local scales.

Many undergraduates take an elementary atmospheric and oceanic sciences course to meet part of their natural or physical science breadth requirements. Other students, who have had sufficient mathematics and physics preparation, take higher-level atmospheric and oceanic sciences courses to complement their major work in other fields of natural science. An atmospheric and oceanic sciences major receives a thorough introduction to the basic concepts and tools in the core courses, which cover the physics and dynamics of the atmosphere and ocean. An array of elective courses are offered in the senior year, with tracks in the areas of weather systems, earth/environmental science, and general and applied atmospheric and oceanic sciences. Elective groups are tailored individually. Some students will want preparation for careers in areas such as operational forecasting, environmental consulting, and broadcasting. Others will seek preparation for graduate work leading to a broader range of careers.

HOW TO GET IN

There are no admissions requirements for the major. Students wishing to declare the Atmospheric & Oceanic Sciences major should meet with the Undergraduate Academic Advising Manager listed in the Contact Box on the right sidebar of this page.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every curricula acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements [http://guide.wisc.edu/undergraduate/#requirementsforundergraduatetestudytext] section of the Guide.

<table>
<thead>
<tr>
<th>Category</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>Complete two courses of 3+ credits at the Intermediate or Advanced level in MATH, COMP SCI, or STAT subjects. A maximum of one course in each of COMP SCI and STAT subjects counts toward this requirement.</td>
</tr>
<tr>
<td>Language</td>
<td>Complete the third unit of a language other than English.</td>
</tr>
</tbody>
</table>
| LS Breadth | Complete:
 - 12 credits of Humanities, which must include at least 6 credits of Language; and
 - 12 credits of Social Science; and
 - 12 credits of Natural Science, which must include 6 credits of Biological Science and 6 credits of Physical Science. |
| Liberal Arts and Science Coursework | Complete at least 108 credits. |
| Depth of Intermediate/Advanced Coursework | Complete at least 60 credits at the Intermediate or Advanced level. |
| Major | Declare and complete at least one major. |
| Total Credits | Complete at least 120 credits. |
| UW-Madison Experience | Complete both:
 - 30 credits in residence, overall, and
 - 30 credits in residence after the 86th credit. |
| Quality of Work |
 - 2.000 in all coursework at UW-Madison
 - 2.000 in Intermediate/Advanced level coursework at UW-Madison |
NON-L&S STUDENTS PURSUING AN L&S MAJOR
Non-L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements. They do not need to complete the L&S Degree Requirements above.

REQUIREMENTS FOR THE MAJOR

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus (complete all):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 221</td>
<td>Calculus and Analytic Geometry 1</td>
<td>5</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus and Analytic Geometry 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 234</td>
<td>Calculus--Functions of Several Variables</td>
<td>4</td>
</tr>
<tr>
<td>Physics (complete one course from each group):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS 207</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>or PHYSICS 201</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>or PHYSICS 247</td>
<td>A Modern Introduction to Physics</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 208</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>or PHYSICS 202</td>
<td>General Physics</td>
<td></td>
</tr>
<tr>
<td>or PHYSICS 248</td>
<td>A Modern Introduction to Physics</td>
<td></td>
</tr>
<tr>
<td>Computer Sciences (complete one):</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 220</td>
<td>Data Science Programming I</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 310</td>
<td>Problem Solving Using Computers</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 320</td>
<td>Data Science Programming II</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/ E C E 354</td>
<td>Machine Organization and Programming</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 412</td>
<td>Introduction to Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E/ I SY E 425</td>
<td>Introduction to Combinatorial Optimization</td>
<td></td>
</tr>
<tr>
<td>MATH 425</td>
<td>Optimization</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Sequence (complete all):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATM OCN 310</td>
<td>Dynamics of the Atmosphere and Ocean I</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 311</td>
<td>Dynamics of the Atmosphere and Ocean II</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 330</td>
<td>Physics of the Atmosphere and Ocean I</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 340</td>
<td>Physics of the Atmosphere and Ocean II</td>
<td>3</td>
</tr>
<tr>
<td>Quantitative Analysis (complete one):</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 412</td>
<td>Introduction to Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/ MATH/STAT 475</td>
<td>Introduction to Combinatorics</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/ MATH 514</td>
<td>Numerical Analysis</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E/ MATH/STAT 525</td>
<td>Linear Optimization</td>
<td></td>
</tr>
<tr>
<td>MATH/STAT 309</td>
<td>Introduction to Probability and Mathematical Statistics I</td>
<td></td>
</tr>
<tr>
<td>MATH/STAT 310</td>
<td>Introduction to Probability and Mathematical Statistics II</td>
<td></td>
</tr>
</tbody>
</table>

MATH 319 Techniques in Ordinary Differential Equations
MATH 320 Linear Algebra and Differential Equations
MATH 321 Applied Mathematical Analysis
MATH 322 Applied Mathematical Analysis
MATH 331 Introductory Probability
MATH 340 Elementary Matrix and Linear Algebra
MATH 341 Linear Algebra
MATH 375 Topics in Multi-Variable Calculus and Linear Algebra
MATH 376 Topics in Multi-Variable Calculus and Differential Equations
MATH 407 Topics in Mathematics Study Abroad
MATH 415 Applied Dynamical Systems, Chaos and Modeling
MATH 421 The Theory of Single Variable Calculus
MATH/ COMP SCI/ I SY E 425 Introduction to Combinatorial Optimization
MATH/STAT 431 Introduction to the Theory of Probability
MATH/ COMP SCI/ I SY E 435 Introduction to Cryptography
MATH 441 Introduction to Modern Algebra
MATH 443 Applied Linear Algebra
MATH 461 College Geometry I
MATH 467 Introduction to Number Theory
MATH/ CURRIC 471 Mathematics for Secondary School Teachers
MATH/ HIST SCI 473 History of Mathematics
MATH/ COMP SCI/ STAT 475 Introduction to Combinatorics
MATH 490 Undergraduate Seminar
MATH 491 Topics in Undergraduate Mathematics
MATH/ COMP SCI 513 Numerical Linear Algebra
MATH/ COMP SCI 514 Numerical Analysis
MATH 519 Ordinary Differential Equations
MATH 521 Analysis I
MATH 522 Analysis II
MATH/ COMP SCI/I SY E/ STAT 525 Linear Optimization
MATH 531 Probability Theory
MATH 535 Mathematical Methods in Data Science
MATH 540 Linear Algebra II
MATH 541 Modern Algebra
MATH 542 Modern Algebra
MATH 551 Elementary Topology
MATH 552 Elementary Geometric and Algebraic Topology
MATH 561 Differential Geometry
MATH 567 Modern Number Theory
MATH/PHILOS 571 Mathematical Logic
MATH 605 Stochastic Methods for Biology
MATH 607 Topics in Mathematics Study Abroad
MATH/B M I/BIOCHEM/BMOLCHEM 609 Mathematical Methods for Systems Biology
MATH 619 Analysis of Partial Differential Equations
MATH 621 Introduction to Manifolds
MATH 623 Complex Analysis
MATH 627 Introduction to Fourier Analysis
MATH 629 Introduction to Measure and Integration
MATH/ISY E/OTM/STAT 632 Introduction to Stochastic Processes
STAT/MATH 309 Introduction to Probability and Mathematical Statistics I
STAT/MATH 310 Introduction to Probability and Mathematical Statistics II
STAT 311 Introduction to Theory and Methods of Mathematical Statistics I
STAT 312 Introduction to Theory and Methods of Mathematical Statistics II
STAT 324 Introductory Applied Statistics for Engineers
STAT 333 Applied Regression Analysis
STAT 340 Data Science Modeling II
STAT 349 Introduction to Time Series
STAT 351 Introductory Nonparametric Statistics
STAT 360 Topics in Statistics Study Abroad
STAT 371 Introductory Applied Statistics for the Life Sciences
STAT 411 An Introduction to Sample Survey Theory and Methods
STAT/MATH 424 Applied Categorical Data Analysis
STAT/MATH 431 Statistical Experimental Design
STAT 456 Applied Multivariate Analysis
STAT 461 Financial Statistics
STAT/COMP SCI 471 Introduction to Computational Statistics
STAT/COMP SCI/MATH 475 Introduction to Combinatorics
STAT 479 Special Topics in Statistics
STAT/COMP SCI/ISY E/MATH 525 Linear Optimization
STAT/B M I 541 Introduction to Biostatistics
STAT/B M I 542 Introduction to Clinical Trials I
STAT/F&W ECOL/HORT 571 Statistical Methods for Bioscience I
STAT/F&W ECOL/HORT 572 Statistical Methods for Bioscience II
STAT 575 Statistical Methods for Spatial Data
STAT 601 Statistical Methods I
STAT 602 Statistical Methods II
STAT 605 Data Science Computing Project
STAT 609 Mathematical Statistics I
STAT 610 Introduction to Statistical Inference
STAT 615 Statistical Learning
STAT 627 Professional Skills in Data Science
STAT 628 Data Science Practicum
STAT/ISY E/MATH/OTM 632 Introduction to Stochastic Processes
STAT/B M I 641 Statistical Methods for Clinical Trials
STAT/B M I 642 Statistical Methods for Epidemiology
STAT 679 Special Topics in Statistics
STAT 681 Senior Honors Thesis
STAT 682 Senior Honors Thesis

Capstone

ATM OCN 405 AOS Senior Capstone Seminar 1

Electives 11

ATM OCN 401 Topics in Meteorology
ATM OCN 404 Meteorological Measurements
ATM OCN 425 Global Climate Processes
ATM OCN 441 Radar and Satellite Meteorology
ATM OCN 452 Synoptic Laboratory I: The Frontal Cyclone
ATM OCN 453 Synoptic Laboratory II: Mesoscale Meteorology
ATM OCN/ENVIR ST 520 Bioclimatology
ATM OCN 522 Tropical Meteorology
ATM OCN/AGRonomy/SOIL SCI 532 Environmental Biophysics
ATM OCN/ENVIR ST 535 Atmospheric Dispersion and Air Pollution
ATM OCN 573 Computational Methods in Atmospheric and Oceanic Sciences
ATM OCN 575 Climatological Analysis
ATM OCN 610 Geophysical Fluid Dynamics I
ATM OCN 611 Geophysical Fluid Dynamics II
ATM OCN 615 Laboratory in Rotating Fluid Dynamics
ATM OCN 630 Introduction to Atmospheric and Oceanic Physics
ATM OCN 637 Cloud Physics
LEARNING OUTCOMES

1. Recognize and describe the fundamental principles and processes associated with the dynamics and thermodynamics of geophysical fluid flows, the basic physics of clouds, aerosols, and precipitation.

2. Recognize and describe the fundamental principles and processes associated with radiation and atmospheric and oceanic radiative transfer.

3. Demonstrate critical thinking skills by identifying a problem, identifying the required information to solve that problem; and formulating and interpreting solutions to that problem using appropriate analytical and/or computational techniques.

4. Apply diagnostic tools to analyses and numerical model output to diagnose, describe, and interpret the fundamental dynamical and thermodynamical processes at work in synoptic-scale, mesoscale, and large-scale weather systems and climate circulations.

5. Apply fundamental radiative transfer theory to interpret remotely-sensed observations of atmospheric and oceanic phenomena.

6. Design and conduct experiments and/or analyze data to test hypotheses in an area of atmospheric or climate sciences.

7. Demonstrate effective scientific communication skills through development and delivery of oral presentations (including poster presentations) and written reports and case studies.

FOUR-YEAR PLAN

This Four-Year Plan is only one way a student may complete an L&S degree with this major. Many factors can affect student degree planning, including placement scores, credit for transferred courses, credits earned by examination, and individual scholarly interests. In addition, many students have commitments (e.g., athletics, honors, research, student organizations, study abroad, work and volunteer experiences) that necessitate they adjust their plans accordingly. Informed students engage in their own unique Wisconsin Experience by consulting their academic advisors, Guide, DARS, and Course Search & Enroll for assistance making and adjusting their plan.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221 (QR-B)</td>
<td>5</td>
<td>MATH 222</td>
<td>4</td>
</tr>
<tr>
<td>ATM OCN 100 or 101</td>
<td>4</td>
<td>ATM OCN/ENVIR ST 171 (Comm B)</td>
<td>3</td>
</tr>
</tbody>
</table>
ADVISING AND CAREERS

GENERAL ADVISING
Any student interested in the Atmospheric and Oceanic Sciences or Environmental Sciences major should meet with the Undergraduate Academic Advising Manager listed in the Contact Box on the right sidebar of this page to discuss steps to complete the necessary prerequisite coursework for the major.

CAREER ADVISING
The Department of Atmospheric and Oceanic Sciences encourages majors to begin working on their career exploration and preparation soon after arriving on campus. We partner with SuccessWorks at the College of Letters & Science to help students turn the academic skills learned in their major, certificates, and other coursework into fulfilling lives after graduation, whether that means jobs, public service, graduate school or other career pursuits.

In addition to providing basic support like resume reviews and interview practice, SuccessWorks offers ways to explore interests and build career skills from their very first semester/term at UW all the way through graduation and beyond.

Students can explore careers in one-on-one advising, try out different career paths, complete internships, prepare for the job search and/or graduate school applications, and connect with supportive alumni and even employers in the fields that inspire them.

- SuccessWorks (https://careers.ls.wisc.edu/)
- Set up a career advising appointment (https://successworks.wisc.edu/make-an-appointment/)
- Enroll in a Career Course (https://successworks.wisc.edu/career-courses/) – a great idea for first- and second-year students:
 - INTER-LS 210 L&S Career Development: Taking Initiative (1 credit)
 - INTER-LS 215 Communicating About Careers (3 credits, fulfills Comm B General Education Requirement)
- Learn about internships and internship funding (https://successworks.wisc.edu/finding-a-job-or-internship/)
- Activate your Handshake account (https://successworks.wisc.edu/handshake/) to apply for jobs and internships from 200,000+ employers recruiting UW-Madison students
- Learn about the impact SuccessWorks has on students’ lives (https://successworks.wisc.edu/about/mission/)

LEADERSHIP

L&S CAREER RESOURCES
Every L&S major opens a world of possibilities. SuccessWorks (https://successworks.wisc.edu/) at the College of Letters & Science helps students turn the academic skills learned in their major, certificates, and other coursework into fulfilling lives after graduation, whether that means jobs, public service, graduate school or other career pursuits.

In addition to providing basic support like resume reviews and interview practice, SuccessWorks offers ways to explore interests and build career skills from their very first semester/term at UW all the way through graduation and beyond.

Students can explore careers in one-on-one advising, try out different career paths, complete internships, prepare for the job search and/or graduate school applications, and connect with supportive alumni and even employers in the fields that inspire them.

- SuccessWorks (https://careers.ls.wisc.edu/)
- Set up a career advising appointment (https://successworks.wisc.edu/make-an-appointment/)
- Enroll in a Career Course (https://successworks.wisc.edu/career-courses/) – a great idea for first- and second-year students:
 - INTER-LS 210 L&S Career Development: Taking Initiative (1 credit)
 - INTER-LS 215 Communicating About Careers (3 credits, fulfills Comm B General Education Requirement)
- Learn about internships and internship funding (https://successworks.wisc.edu/finding-a-job-or-internship/)
- Activate your Handshake account (https://successworks.wisc.edu/handshake/) to apply for jobs and internships from 200,000+ employers recruiting UW-Madison students
- Learn about the impact SuccessWorks has on students’ lives (https://successworks.wisc.edu/about/mission/)

LEADERSHIP

PEOPLE

PROFESSORS
Back, Larissa
Desai, Ankur (Chair)
Hitchman, Matt
Holloway, Tracey
L’Ecuyer, Tristan
Martin, Jonathan
Morgan, Michael (On leave)
Pierce, Brad
Vimont, Dan

ASSOCIATE PROFESSORS
Adames-Corraliza, Ángel
Lang, Andrea Lopez

ASSISTANT PROFESSORS
Henderson, David
Henderson, Stephanie
Maroon, Elizabeth
Oyola-Merced, Mayra
Rowe, Angela
Wagner, Till
Zanowski, Hannah