CONSERVATION BIOLOGY, B.A.

Conservation Biology is a science-based major designed to provide students broad training in biological, ecological, and related disciplines most relevant to conservation. The program emphasizes basic knowledge of natural history, whole organism biology, ecological interactions, and field biology. The major is characterized by flexibility with a broad range of opportunities allowing students to tailor the program to their interests. This major appeals to independent students capable of assembling a curriculum that takes maximum advantage of both strong background, diversity, and specialization, as well as the breadth available through an L&S major. The program has a unique appeal to students passionate about conservation biology, from the social scientist to the theoretical ecologist, and empowers students to act as informed citizens of the natural world.

Aldo Leopold, former UW professor considered the father of wildlife management, and Norman Fassett, former UW professor of Botany, first initiated this major in the 1940s to prepare individuals for careers as game wardens, ranger naturalists, and museum workers. These opportunities continue and have expanded to include work in environmental education; forest, game and park management; endangered species research and recovery efforts; work with private conservation organizations and government agencies; and many more. The major is recommended for those seeking a liberal education in the intrinsic values of natural resources and those preparing for graduate study in the rapidly developing field of conservation biology.

INTERNSHIP/FIELD EXPERIENCE

Students in the conservation biology major are encouraged to take field courses when possible (including suitable study abroad programs) and to gain additional experience via summer jobs and paid or unpaid internships. Students who wish to obtain academic credit for such an experience should arrange in advance to take a Directed Study (e.g., BOTANY 699 Directed Study or ZOOLOGY 699 Directed Studies in Zoology course) as elective work in the major during or immediately after their internship. A maximum of 10 credits of directed study (698, 699), senior honors thesis (681, 682), senior thesis (691,692), or internships (F&W ECOL 399 Coordinative Internship/Cooperative Education, ZOOLOGY 677 Internship in Ecology) will count toward the major.

HOW TO GET IN

To declare the conservation biology major, students must make an appointment (https://conservationbiology.ls.wisc.edu/requirements/#how-to-declare) with the conservation biology student services coordinator.

If students are not currently in the College of Letters & Science (L&S), they must transfer into L&S before declaring. Students are welcome to meet with the conservation biology student services coordinator to discuss the major before transferring.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatetystudenttext) section of the Guide.

General Education

- Breadth—Humanities/Literature/Arts: 6 credits
- Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth—Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

COLLEGE OF LETTERS & SCIENCE DEGREE REQUIREMENTS: BACHELOR OF ARTS (B.A.)

Students pursuing a bachelor of arts degree in the College of Letters & Science must complete all of the requirements below. The College of Letters & Science allows this major to be paired with either a bachelor of arts or a bachelor of science curriculum.

BACHELOR OF ARTS DEGREE REQUIREMENTS

Mathematics

- Complete the University General Education Requirements for Quantitative Reasoning A (QR-A) and Quantitative Reasoning B (QR-B) coursework.

Foreign Language

- Complete the fourth unit of a foreign language; OR
- Complete the third unit of a foreign language and the second unit of an additional foreign language.

L&S Breadth

- 12 credits of Humanities, which must include 6 credits of literature; and
- 12 credits of Social Science; and
- 12 credits of Natural Science, which must include one 3+ credit Biological Science course and one 3+ credit Physical Science course.

Liberal Arts and Science Coursework

- Complete at least 108 credits.
Conservation Biology, B.A.

Depth of Intermediate/Advanced work

Complete at least 60 credits at the intermediate or advanced level.

Major

Declare and complete at least one major.

Total Credits

Complete at least 120 credits.

UW-Madison Experience

• 30 credits in residence, overall; and
• 30 credits in residence after the 86th credit.

Quality of Work

• 2.000 in all coursework at UW–Madison
• 2.000 in Intermediate/Advanced level coursework at UW–Madison

NON–L&S STUDENTS PURSUING AN L&S MAJOR

Non–L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements. They do not need to complete the L&S Degree Requirements above.

REQUIREMENTS FOR THE MAJOR

Conservation biology majors must take at least 50 credits in the major. When selecting courses to meet major requirements, students are encouraged to meet with their faculty advisor or student services coordinator to discuss courses that align with their areas of academic interest.

INTRODUCTORY COURSES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete one of the following options:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/ ZOOLOGY 101</td>
<td>Animal Biology</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/ ZOOLOGY 102</td>
<td>Animal Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/ BOTANY 130</td>
<td>General Botany</td>
<td></td>
</tr>
<tr>
<td>Option 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/ BOTANY/ ZOOLOGY 151</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY/ BOTANY/ ZOOLOGY 152</td>
<td>Introductory Biology</td>
<td></td>
</tr>
<tr>
<td>Option 3:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete at least 10 credits from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOCORE 381</td>
<td>Evolution, Ecology, and Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 382</td>
<td>Evolution, Ecology, and Genetics Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 383</td>
<td>Cellular Biology</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 384</td>
<td>Cellular Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 485</td>
<td>Principles of Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 486</td>
<td>Principles of Physiology Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Chemistry

Complete one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 103</td>
<td>General Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 108</td>
<td>Chemistry in Our World</td>
<td></td>
</tr>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry (for those who might take more chemistry)</td>
<td></td>
</tr>
</tbody>
</table>

Physical Environment

Complete one of the following:

ATM OCN/GEOSCI 105	Survey of Oceanography	3-5
ENVIR ST/GEOSCI 106	Environmental Geology	
ENVIR ST/ GEOG 120	Introduction to the Earth System	
ENVIR ST/ GEOG 127	Physical Systems of the Environment	
GEOSCI 100	Introductory Geology: How the Earth Works	
GEOSCI 202	Introduction to Geologic Structures	
GEOSCI 204	Geologic Evolution of the Earth	

Ecology and Evolution

Complete two of the following, each from a different category (students are encouraged to take courses in all three areas):

Ecology:

| BOTANY/ F&W ECOL/ ZOOLOGY 460 | General Ecology | |

Evolution:

| GEOSCI 110 or ANTHRO/ BOTANY/ ZOOLOGY 410 | Evolution and Extinction | |
| GEOSCI 110 or ANTHRO/ BOTANY/ ZOOLOGY 410 | Evolutionary Biology | |

Extinction:

| ENVIR ST/F&W ECOL/ZOOLOGY 360 | Extinction of Species | |

Statistics

Complete one of the following:

STAT 371	Introductory Applied Statistics for the Life Sciences	
STAT 301	Introduction to Statistical Methods	
STAT/F&W ECOL/HORT 571	Statistical Methods for Bioscience I	

SPECIES & FIELD BIOLOGY

Complete 12 credits from:

AGRONOMY/ BOTANY/ SOIL SCI 370	Grassland Ecology	
ENTOM/ ZOOLOGY 371	Medical Entomology	
AN SCI/ F&W ECOL/ ZOOLOGY 520	Ornithology	
AN SCI/F&W ECOL/ZOOLOGY 521 Birds of Southern Wisconsin
ANTHRO 391 Bones for the Archaeologist
ANTHRO 420 Introduction to Primatological Research
ANTHRO 458 Primate Behavioral Ecology
ANTHRO 668 Primate Conservation
BOTANY 330 Algae
BOTANY 332 Fungi
BOTANY 330 Vascular Flora of Wisconsin
BOTANY/F&W ECOL 402 Dendrology
BOTANY 403 Field Collections and Identification
BOTANY 422 Plant Geography
BOTANY/F&W ECOL 455 The Vegetation of Wisconsin
BOTANY/ENTOM/ZOOLOGY 473 Plant-Insect Interactions
ENTOM/ZOOLOGY 302 Introduction to Entomology
ENTOM 331 Taxonomy of Mature Insects
ENTOM 432 Taxonomy and Bionomics of Immature Insects
ENTOM 468 Studies in Field Entomology
ENVIR ST/ZOOLOGY 315 Limnology-Conservation of Aquatic Resources
ENVIR ST 375 Field Ecology Workshop
ENVIR ST/ZOOLOGY 510 Ecology of Fishes
ENVIR ST/ZOOLOGY 511 Ecology of Fishes Lab
F&W ECOL 306 Terrestrial Vertebrates: Life History and Ecology
F&W ECOL 401 Physiological Animal Ecology
F&W ECOL 548 Diseases of Wildlife
F&W ECOL 655 Animal Population Dynamics
GEOSCI 333 The Age of Dinosaurs
GEOSCI/ZOOLOGY 541 Paleobiology
GEOSCI/ZOOLOGY 542 Invertebrate Paleontology
LAND ARC/ENVIR ST 361 Wetlands Ecology
LAND ARC 375 Special Topics (Ecological Series: Prescribed Fire)
MICROBIO 303 Biology of Microorganisms
MICROBIO 304 Biology of Microorganisms Laboratory
M&M/ENTOM/PATH-BIO/ZOOLOGY 350 Parasitology
PSYCH 449 Animal Behavior
or ZOOLOGY 425 Behavioral Ecology
PSYCH 450 Primates and Us: Insights into Human Biology and Behavior
ZOOLOGY 304 Marine Biology
ZOOLOGY/ENVIR ST 315 Limnology-Conservation of Aquatic Resources
ZOOLOGY 316 Laboratory for Limnology-Conservation of Aquatic Resources
ZOOLOGY 430 Comparative Anatomy of Vertebrates

ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Social Science Electives

Complete at least one 3 credit course from Social Science elective list:

- A A E 215 Introduction to Agricultural and Applied Economics
- A A E/ENVIR ST 244 The Environment and the Global Economy
- BOTANY/AMER IND/ANTHRO 474 Ethnobotany
- C&E SOC/SOC 140 Introduction to Community and Environmental Sociology
- C&E SOC/F&W ECOL/SOC 248 Environment, Natural Resources, and Society
- ECON 101 Principles of Microeconomics
- ECON/ENVIR ST/POLI SCI/URB R PL 449 Government and Natural Resources
- ENVIR ST/GEOG/HISTORY 460 American Environmental History
- ENVIR ST/GEOG/HISTORY 469 The Making of the American Landscape
- GEOG 344 Changing Landscapes of the American West
- GEOG 359 Australia: Environment and Society
- GEOG 538 The Humid Tropics: Ecology, Subsistence, and Development

Electives to attain 50 credits in the major
AGRONOMY/ENTOM/F&W ECOL/M&ENVTOX 632
Ecotoxicology: The Chemical Players

AGRONOMY/ENTOM/F&W ECOL/M&ENVTOX 633
Ecotoxicology: Impacts on Individuals

AGRONOMY/ENTOM/F&W ECOL/M&ENVTOX 634
Ecotoxicology: Impacts on Populations, Communities and Ecosystems

ATM OCN 100 Weather and Climate

ATM OCN 101 Weather and Climate

ATM OCN/ENVIR ST 171 Global Change: Atmospheric Issues and Problems

BOTANY/PL PATH 123 Plants, Parasites, and People

BOTANY/ENVIR ST/ZOOLOGY 260 Introductory Ecology

BOTANY 300 Plant Anatomy

BOTANY 305 Plant Morphology and Evolution

BOTANY/ZOOLOGY 450 Midwestern Ecological Issues: A Case Study Approach

BOTANY/ENTOM/PL PATH 505 Plant-Microbe Interactions: Molecular and Ecological Aspects

BOTANY/ENVIR ST/F&W ECOL/ZOOLOGY 651 Conservation Biology

C&E SOC/ENVIR ST/GEOG 434 People, Wildlife and Landscapes

ENTOM/ENVIR ST 201 Insects and Human Culture-a Survey Course in Entomology

ENTOM/ZOOLOGY 540 Theoretical Ecology

ENTOM 699 Special Problems

ENVIR ST/ILS 126 Principles of Environmental Science

ENVIR ST/GEOG/SOIL SCI 230 Soil: Ecosystem and Resource

ENVIR ST 307 Literature of the Environment: Speaking for Nature

ENVIR ST/SOIL SCI 324 Soils and Environmental Quality

ENVIR ST/LAND ARC 361 Wetlands Ecology

ENVIR ST/CIV ENGR/GEOG 377 An Introduction to Geographic Information Systems

ENVIR ST/POP HLTH 471 Introduction to Environmental Health

ENVIR ST/PHYSICS 472 Scientific Background to Global Environmental Problems

ENVIR ST/F&W ECOL 515 Natural Resources Policy

ENVIR ST/GEOG 537 Culture and Environment

ENVIR ST/SOIL SCI 575 Assessment of Environmental Impact

F&W ECOL/ZOOLOGY 335 Human/Animal Relationships: Biological and Philosophical Issues

F&W ECOL 375 Special Topics (Freshwater Conservation)

F&W ECOL 379 Principles of Wildlife Management

F&W ECOL 410 Principles of Silviculture

F&W ECOL 550 Forest Ecology

F&W ECOL 551 Forest Ecology Lab

F&W ECOL 561 Wildlife Management Techniques

F&W ECOL/LAND ARC/ZOOLOGY 565 Principles of Landscape Ecology

F&W ECOL/HORT/STAT 571 Statistical Methods for Bioscience I

F&W ECOL/ENTOM/PL PATH/SOIL SCI 606 Colloquium in Environmental Toxicology

GENETICS 466 Principles of Genetics

GEOSCI/GEOG 420 Glacial and Pleistocene Geology

GEOSCI/G LE 627 Hydrogeology

LAND ARC 211 Landscape Inventory and Evaluation Methods

MICROBIO 101 General Microbiology

MICROBIO 102 General Microbiology Laboratory

PL PATH 300 Introduction to Plant Pathology

PL PATH 315 Plant Microbiomes

PSYCH 606 Hormones and Behavior

SOIL SCI 301 General Soil Science

STAT/F&W ECOL/HORT 572 Statistical Methods for Bioscience II

RESIDENCE AND QUALITY OF WORK
- 2.000 GPA in all major courses
- 2.000 GPA on 15 upper-level major credits, taken in residence
- 15 credits in the major, taken on the UW–Madison campus

HONORS IN THE MAJOR
Students may declare Honors in the Conservation Biology Major in consultation with the Conservation Biology undergraduate advisor.

HONORS IN THE CONSERVATION BIOLOGY MAJOR REQUIREMENTS
To earn Honors in the Major in Conservation Biology, students must satisfy both the requirements for the major (above) and the following additional requirements:
FOOTNOTES

1 Students may NOT apply both ZOLOGY 425 Behavioral Ecology and PSYCH 449 Animal Behavior in the conservation biology program.

2 Courses in the major numbered 300 through 699 are considered upper level.

3 Examples include Botany, Zoology, Environmental Studies; see the Conservation Biology advisor to verify that your thesis department will be acceptable.

UNIVERSITY DEGREE REQUIREMENTS

To receive a bachelor’s degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

This Sample Four-Year Plan is a tool to assist students and their advisor(s). Students should use it—along with their DARS report, the Degree Planner, and Course Search & Enroll tools—to make their own four-year plan based on their placement scores, credit for transferred courses and approved examinations, and individual interests. As students become involved in athletics, honors, research, student organizations, study abroad, volunteer experiences, and/or work, they might adjust the order of their courses to accommodate these experiences. Students will likely revise their own four-year plan several times during college.

The Conservation Biology road map is a tool to assist you and your advisor in planning your academic career. Use it along with your DARS report and the Course Guide/Schedule of Classes. Your specific program of study could, and probably will, look different. You should customize the road map to fit your unique path at UW–Madison. Consult with your advisor about the best path for you.

LEARNING OUTCOMES

1. Explain the basic concepts of ecology and evolution and how they underpin and apply to the science of conservation biology.

2. Understand and explain the scientific process as related to conservation biology, including the relevance of theories and how hypotheses are tested.

3. Recognize species within some particular group of organisms and explain key aspects of their ecology, phylogeny, and conservation needs.

4. Apply general ecological principles to assess and address conservation threats to particular species, communities, and ecosystems.

5. Investigate and communicate the connections between the biological and social sciences and humanities as they affect conservation programs and activities.

6. Identify, interpret, and communicate conservation ideas, needs and programs to others.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

This Sample Four-Year Plan is a tool to assist students and their advisor(s). Students should use it—along with their DARS report, the Degree Planner, and Course Search & Enroll tools—to make their own four-year plan based on their placement scores, credit for transferred courses and approved examinations, and individual interests. As students become involved in athletics, honors, research, student organizations, study abroad, volunteer experiences, and/or work, they might adjust the order of their courses to accommodate these experiences. Students will likely revise their own four-year plan several times during college.

The Conservation Biology road map is a tool to assist you and your advisor in planning your academic career. Use it along with your DARS report and the Course Guide/Schedule of Classes. Your specific program of study could, and probably will, look different. You should customize the road map to fit your unique path at UW–Madison. Consult with your advisor about the best path for you.

LEARNING OUTCOMES

1. Explain the basic concepts of ecology and evolution and how they underpin and apply to the science of conservation biology.

2. Understand and explain the scientific process as related to conservation biology, including the relevance of theories and how hypotheses are tested.

3. Recognize species within some particular group of organisms and explain key aspects of their ecology, phylogeny, and conservation needs.

4. Apply general ecological principles to assess and address conservation threats to particular species, communities, and ecosystems.

5. Investigate and communicate the connections between the biological and social sciences and humanities as they affect conservation programs and activities.

6. Identify, interpret, and communicate conservation ideas, needs and programs to others.
Students contemplating graduate work in a biological discipline are advised to take the following:

Students in the conservation biology major are assigned to a team of advisors composed of a faculty advisor and the major’s student services coordinator. See the major’s advising page (https://conservationbiology.ls.wisc.edu/advising/) for a list of advisors and for the student services coordinator information.

The faculty advisor provides guidance specific to the discipline through discussions about undergraduate experiences (e.g., research, coursework, internships) that will help prepare students for graduate work or a career after graduation. The student services coordinator provides guidance specific to the discipline but helps students with major declarations, course selection, registration, DARS, L&S degree and major requirements, and tracking progress toward graduation, as well as connecting students with important resources on campus. Because the major is so broad and involves so much choice, it is important for students to meet early and regularly with their student services coordinator and faculty advisor.

Students contemplating graduate work in a biological discipline are advised to take the following:

| Elective in the major (if needed for 50 credits) | 3-4 Social Science Breadth | 3-4 |
| Humanities Breadth | 3-4 Elective | 3-4 |

Total Credits 120

Although not required for the major, such students are also encouraged to take the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTANY/\F&W ECOL/\ZOOLOGY 460</td>
<td>General Ecology</td>
<td></td>
</tr>
</tbody>
</table>

The Personal Statement Requirement (https://conservationbiology.ls.wisc.edu/requirements/), completed during your final year, gives you an opportunity to work with your faculty advisor on this writing requirement that connects your UW–Madison experiences to your future. Through your writing and conversations, you will be evaluated on one of the major’s learning goals.

HOW DOES IT WORK?

1. Set up an appointment with your faculty advisor in your final year and indicate the meeting is regarding the personal statement requirement.
2. Send to your faculty advisor, in advance of the meeting, your choice of a cover letter for a position of interest, a personal plan for graduate school, or your own two-page personal statement related to the stated learning goal.
3. Bring along a hard copy of the evaluation form to be completed and signed by your faculty advisor and then submit evaluation to the Conservation Biology Student Services Coordinator, 141 Birge Hall.

L&S CAREER RESOURCES

SuccessWorks at the College of Letters & Science helps students leverage the academic skills learned in their major, certificates, and liberal arts degree; explore and try out different career paths; participate in internships; prepare for the job search and/or graduate school applications; and network with professionals in the field (alumni and employers). In short, SuccessWorks helps students in the College of Letters & Science discover themselves, find opportunities, and develop the skills they need for success after graduation.

SuccessWorks can also assist students in career advising, résumé and cover letter writing, networking opportunities, and interview skills, as well as course offerings for undergraduates to begin their career exploration early in their undergraduate career.

Students should set up their profiles in Handshake (https://careers.ls.wisc.edu/handshake/) to take care of everything they need to explore career events, manage their campus interviews, and apply to jobs and internships from 200,000+ employers around the country.

- SuccessWorks (https://careers.ls.wisc.edu/)
- Set up a career advising appointment (https://careers.ls.wisc.edu/make-an-appointment/)
- INTER-LS 210 L&S Career Development: Taking Initiative (1 credit, targeted to first- and second-year students)—for more information,

• INTER-LS 215 Communicating About Careers (3 credits, fulfills Com B General Education Requirement)
• Handshake (https://careers.ls.wisc.edu/handshake/)
• Learn how we’re transforming career preparation: L&S Career Initiative (http://ls.wisc.edu/lsci/)

PEOPLE

Committee of Advisors: Cameron (Botany, chair of major), Givnish (Botany), Hotchkiss (Botany/Environmental Studies), Ives (Zoology), Pigeon (Forest & Wildlife Ecology), Schoville (Entomology), Strier (Anthropology), Vander Zanden, Waller (Botany), Zuckerberg (Forest and Wildlife Ecology)

RESOURCES AND SCHOLARSHIPS

ROLAND H. & MAUDE M. BECKER SCHOLARSHIP

Established by Barbara B. Glass in 1988 in memory of her parents, the Roland & Maude Becker Scholarship (https://conservationbiology.ls.wisc.edu/scholarships/) provides financial assistance to students with a major in conservation biology. The scholarship is a one-time award to help support a conservation experience related to the major. A conservation experience may include an undergraduate research experience, internship experience, study abroad program, etc. Awards will be in the amount of $500 and up to two awards will be awarded per academic year.

SUCCESSWORKS SUMMER INTERNSHIP SCHOLARSHIP

This scholarship (https://careers.ls.wisc.edu/is-finding-an-internship/money-for-your-internship/) provides amounts ranging from $2,000 to $5,000 each to help students take advantage of and enable them to participate in a first time internship opportunity that is unpaid or provides a limited stipend.

HILLDALE UNDERGRADUATE/FACULTY RESEARCH FELLOWSHIP

The Hilldale Undergraduate/Faculty Research Fellowships (https://awards.advising.wisc.edu/all-scholarships/hilldale-undergraduatefaculty-research-fellowship/) support undergraduate research done in collaboration with UW–Madison faculty or research/instructional academic staff. Approximately 97–100 Hilldale awards are available each year. The student researcher receives $3,000, and faculty/staff research advisor receives $1,000 to help offset research costs (e.g., supplies, faculty or student travel related to the project).

HOLSTROM ENVIRONMENTAL RESEARCH FELLOWSHIP

The Holstrom Environmental Research Fellowship (https://awards.advising.wisc.edu/all-scholarships/holstrom-environmental-research-fellowship/) supports undergraduate research done in collaboration with UW–Madison faculty or research/instructional academic staff. Research proposals must have an environmental focus, and applicants must have at least a junior standing at time of application. Apply spring semester to fund work on the project during the summer or following academic year.

UNDERGRADUATE SYMPOSIUM

The annual Undergraduate Symposium (https://ugradsymposium.wisc.edu/) showcases undergraduate creativity, achievement, research, service-learning and community-based research from all areas of study at UW–Madison including the humanities, fine arts, biological sciences, physical sciences, and social sciences. This past year nearly 700 students presented, displayed or performed their work for members of the university, the surrounding community, family and friends.

WISCONSIN IDEA FELLOWSHIPS

Wisconsin Idea Fellowships (https://morgridge.wisc.edu/students/wisconsin-idea-fellowships/) are awarded annually to undergraduate student projects working toward solving a challenge identified along with local or global community partners. Fellowships are awarded to semester-long or year-long projects designed by an undergraduate student (or group of students) in collaboration with a community organization and a UW–Madison faculty or academic staff member.