CONSERVATION BIOLOGY, B.S.

Conservation Biology is a science-based major designed to provide students broad training in biological, ecological, and related disciplines most relevant to conservation. The program emphasizes basic knowledge of natural history, whole organism biology, ecological interactions, and field biology. The major is characterized by flexibility with a broad range of opportunities allowing students to tailor the program to their interests. This major appeals to independent students capable of assembling a curriculum that takes maximum advantage of both strong background, diversity, and specialization, as well as the breadth available through an L&S major. The program has a unique appeal to students passionate about conservation biology, from the social scientist to the theoretical ecologist, and empowers students to act as informed citizens of the natural world.

Aldo Leopold, former UW professor considered the father of wildlife management, and Norman Fassett, former UW professor of Botany, first initiated this major in the 1940s to prepare individuals for careers as game wardens, ranger naturalists, and museum workers. These opportunities continue and have expanded to include work in environmental education; forest, game and park management; endangered species research and recovery efforts; work with private conservation organizations and government agencies; and many more. The major is recommended for those seeking a liberal education in the intrinsic values of natural resources and those preparing for graduate study in the rapidly developing field of conservation biology.

INTERNship/FIELD EXPERIENCE

Students in the conservation biology major are encouraged to take field courses when possible (including suitable study abroad programs) and to gain additional experience via summer jobs and paid or unpaid internships. Students who wish to obtain academic credit for such an experience should arrange in advance to take a Directed Study (e.g., BOTANY 699 Directed Study or ZOOLOGY 699 Directed Studies in Zoology course) as elective work in the major during or immediately after their internship. A maximum of 10 credits of directed study (698, 699), senior honors thesis (681, 682), senior thesis (691,692), or internships (F&W ECOL 399 Coordinative Internship/Cooperative Education, ZOOLOGY 677 Internship in Ecology) will count toward the major.

HOW TO GET IN

To declare the conservation biology major, students must make an appointment (https://conservationbiology.ls.wisc.edu/requirements/#how-to-declare) with the conservation biology student services coordinator.

If students are not currently in the College of Letters & Science (L&S), they must transfer into L&S before declaring. Students are welcome to meet with the conservation biology student services coordinator to discuss the major before transferring.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatestudytext) section of the Guide.

General Education

• Breadth—Humanities/Literature/Arts: 6 credits
• Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
• Breadth—Social Studies: 3 credits
• Communication Part A & Part B *
• Ethnic Studies *
• Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

COLLEGE OF LETTERS & SCIENCE BREADTH AND DEGREE REQUIREMENTS: BACHELOR OF SCIENCE (B.S.)

Students pursuing a bachelor of science degree in the College of Letters & Science must complete all of the requirements below. The College of Letters & Science allows this major to be paired with either a bachelor of arts or a bachelor of science curriculum. View a comparison of the degree requirements here. (https://pubs.wisc.edu/home/archives/ug15/images/babs2009.pdf)

BACHELOR OF SCIENCE DEGREE REQUIREMENTS

Mathematics

Two (2) 3+ credits of intermediate/advanced level MATH, COMP SCI, STAT

Limit one each: COMP SCI, STAT

Foreign Language

Complete the third unit of a foreign language

Note: A unit is one year of high school work or one semester/term of college work.

L&S Breadth

• Humanities, 12 credits: 6 of the 12 credits must be in literature
• Social Sciences, 12 credits
• Natural Sciences, 12 credits: must include 6 credits in biological science; and must include 6 credits in physical science
Conservation Biology, B.S.

Liberal Arts and Science Coursework

108 credits

Depth of Intermediate/Advanced work

60 intermediate or advanced credits

Major

 Declare and complete at least one (1) major

Total Credits

120 credits

UW-Madison Experience

30 credits in residence, overall

30 credits in residence after the 86th credit

Minimum

2.000 in all coursework at UW–Madison

GPAs

2.000 in intermediate/advanced coursework at UW–Madison

NON–L&S STUDENTS PURSUING AN L&S MAJOR

Non–L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements and do not need to complete the L&S breadth and degree requirements above. Please note that the following special degree programs are not considered majors so are not available to non-L&S-degree-seeking candidates:

• Applied Mathematics, Engineering and Physics (Bachelor of Science–Applied Mathematics, Engineering and Physics)
• Journalism (Bachelor of Arts–Journalism; Bachelor of Science–Journalism)
• Music (Bachelor of Music)
• Social Work (Bachelor of Social Work)

REQUIREMENTS FOR THE MAJOR

Conservation biology majors must take at least 50 credits in the major. When selecting courses to meet major requirements, students are encouraged to meet with their faculty advisor or student services coordinator to discuss courses that align with their areas of academic interest.

INTRODUCTORY COURSES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Biology</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Complete one of the following options:

Option 1:

- BIOLOGY/ZOOLOGY 101 Animal Biology
- BIOLOGY/ZOOLOGY 102 Animal Biology Laboratory
- BIOLOGY/BOTANY 130 General Botany

Option 2:

- BIOLOGY/BOTANY/ZOOLOGY 151 Introductory Biology

Option 3:

Complete at least 10 credits from the following:

- BIOCORE 381 Evolution, Ecology, and Genetics
- BIOCORE 382 Evolution, Ecology, and Genetics Laboratory
- BIOCORE 383 Cellular Biology
- BIOCORE 384 Cellular Biology Laboratory
- BIOCORE 485 Principles of Physiology
- BIOCORE 486 Principles of Physiology Laboratory

Chemistry

4-5

Complete one of the following:

- CHEM 103 General Chemistry I
- CHEM 108 Chemistry in Our World
- CHEM 109 Advanced General Chemistry (for those who might take more chemistry)

Physical Environment

3-5

Complete one of the following:

- ATM OCN/GEOSCI 105 Survey of Oceanography
- ENVIR ST/GEOSCI 106 Environmental Geology
- ENVIR ST/GEOG 120 Introduction to the Earth System
- ENVIR ST/GEOG 127 Physical Systems of the Environment
- GEOSCI 100 Introductory Geology: How the Earth Works
- GEOSCI 107 Life of the Past
- GEOSCI 202 Introduction to Geologic Structures
- GEOSCI 204 Geologic Evolution of the Earth

Ecology and Evolution

6-7

Complete two of the following, each from a different category (students are encouraged to take courses in all three areas):

Ecology:

- BOTANY/F&W ECOL/ZOOLOGY 460 General Ecology

Evolution:

- GEOSCI 110 or ANTHRO/BOTANY/ZOOLOGY 410 Evolution and Extinction
- Evolutionary Biology

Extinction:

- ENVIR ST/F&W ECOL/ZOOLOGY 360 Extinction of Species

Statistics

3

Complete one of the following:

- STAT 371 Introductory Applied Statistics for the Life Sciences
- STAT 301 Introduction to Statistical Methods
- STAT/F&W ECOL/HORT 571 Statistical Methods for Bioscience I
SPECIES & FIELD BIOLOGY

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRONOMY/BOTANY/SOIL SCI 370</td>
<td>Grassland Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ENTOM/ZOOLOGY 371</td>
<td>Medical Entomology</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI/F&W ECOL/ZOOLOGY 520</td>
<td>Ornithology</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI/F&W ECOL/ZOOLOGY 521</td>
<td>Birds of Southern Wisconsin</td>
<td>3</td>
</tr>
<tr>
<td>ANTHRO 391</td>
<td>Bones for the Archaeologist</td>
<td>3</td>
</tr>
<tr>
<td>ANTHRO 420</td>
<td>Introduction to Primatological Research</td>
<td>3</td>
</tr>
<tr>
<td>ANTHRO 458</td>
<td>Primate Behavioral Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ANTHRO 668</td>
<td>Primate Conservation</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY 330</td>
<td>Algae</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/PL PATH 332</td>
<td>Fungi</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY 400</td>
<td>Plant Systematics</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY 401</td>
<td>Vascular Flora of Wisconsin</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/F&W ECOL 402</td>
<td>Dendrology</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY 403</td>
<td>Field Collections and Identification</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY 422</td>
<td>Plant Geography</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/F&W ECOL 455</td>
<td>The Vegetation of Wisconsin</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/ENTOM/ZOOLOGY 473</td>
<td>Plant-Insect Interactions</td>
<td>3</td>
</tr>
<tr>
<td>ENTOM/ZOOLOGY 302</td>
<td>Introduction to Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTOM 331</td>
<td>Taxonomy of Mature Insects</td>
<td>3</td>
</tr>
<tr>
<td>ENTOM 432</td>
<td>Taxonomy and Bionomics of Immature Insects</td>
<td>3</td>
</tr>
<tr>
<td>ENTOM 468</td>
<td>Studies in Field Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/ZOOLOGY 315</td>
<td>Limnology-Conservation of Aquatic Resources</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST 375</td>
<td>Field Ecology Workshop</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/ZOOLOGY 510</td>
<td>Ecology of Fishes</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/ZOOLOGY 511</td>
<td>Ecology of Fishes Lab</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 306</td>
<td>Terrestrial Vertebrates: Life History and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 401</td>
<td>Physiological Animal Ecology</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL/SURG SCI 548</td>
<td>Diseases of Wildlife</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 655</td>
<td>Animal Population Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>GEOSCI 333</td>
<td>The Age of Dinosaurs</td>
<td>3</td>
</tr>
<tr>
<td>GEOSCI/ZOOLOGY 541</td>
<td>Paleobiology</td>
<td>3</td>
</tr>
<tr>
<td>GEOSCI/ZOOLOGY 542</td>
<td>Invertebrate Paleontology</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND ARC/ENVIR ST 361</td>
<td>Wetlands Ecology</td>
<td>3</td>
</tr>
<tr>
<td>LAND ARC 375</td>
<td>Special Topics (Ecological Series: Prescribed Fire)</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 303</td>
<td>Biology of Microorganisms</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 304</td>
<td>Biology of Microorganisms Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>M & I/ENTOM/PATH-BIO/ZOOLOGY 350</td>
<td>Parasitology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 449</td>
<td>Animal Behavior</td>
<td>3</td>
</tr>
<tr>
<td>or ZOOLOGY 425 Behavioral Ecology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYCH 450</td>
<td>Primates and Us: Insights into Human Biology and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 304</td>
<td>Marine Biology</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY/ENVIR ST 315</td>
<td>Limnology-Conservation of Aquatic Resources</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 316</td>
<td>Laboratory for Limnology-Conservation of Aquatic Resources</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 430</td>
<td>Comparative Anatomy of Vertebrates</td>
<td>3</td>
</tr>
</tbody>
</table>

Social Science Electives

Complete at least one 3 credit course from Social Science elective list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A A E 215</td>
<td>Introduction to Agricultural and Applied Economics</td>
<td>3</td>
</tr>
<tr>
<td>A A E/ENVIR ST 244</td>
<td>The Environment and the Global Economy</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/AMER IND/ANTHRO 474</td>
<td>Ethnobotany</td>
<td>3</td>
</tr>
<tr>
<td>C&E SOC/SOC 140</td>
<td>Introduction to Community and Environmental Sociology</td>
<td>3</td>
</tr>
<tr>
<td>C&E SOC/F&W ECOL/SOC 248</td>
<td>Environment, Natural Resources, and Society</td>
<td>3</td>
</tr>
<tr>
<td>ECON 101</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON/ENVIR ST/POLI SCI/URB R PL 449</td>
<td>Government and Natural Resources</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/GEOG 139</td>
<td>Global Environmental Issues</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/AMER IND 306</td>
<td>Indigenous Peoples and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/GEOG 339</td>
<td>Environmental Conservation</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/PL PATH 368</td>
<td>Environmental Law, Toxic Substances, and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/PHILOS 441</td>
<td>Environmental Ethics</td>
<td>3</td>
</tr>
</tbody>
</table>
American Environmental History

Changing Landscapes of the American West

Australia: Environment and Society

The Humid Tropics: Ecology, Subsistence, and Development

Electives to attain 50 credits in the major

Ecotoxicology: The Chemical Players

Ecotoxicology: Impacts on Individuals

Ecotoxicology: Impacts on Populations, Communities and Ecosystems

Weather and Climate

Global Change: Atmospheric Issues and Problems

Plants, Parasites, and People

Introductory Ecology

Plant Anatomy

Plant Morphology and Evolution

Midwestern Ecological Issues: A Case Study Approach

Plant-Microbe Interactions: Molecular and Ecological Aspects

Conservation Biology

People, Wildlife and Landscapes

Insects and Human Culture-a Survey Course in Entomology

Theoretical Ecology

Special Problems

Principles of Environmental Science

Soil: Ecosystem and Resource

Literature of the Environment: Speaking for Nature

Soils and Environmental Quality

Wetlands Ecology

An Introduction to Geographic Information Systems

Introduction to Environmental Health

Scientific Background to Global Environmental Problems

Natural Resources Policy

Culture and Environment

Assessment of Environmental Impact

Human/Animal Relationships: Biological and Philosophical Issues

Special Topics (Freshwater Conservation)

Principles of Wildlife Management

Principles of Silviculture

Forest Ecology

Forest Ecology Lab

Wildlife Management Techniques

Principles of Landscape Ecology

Statistical Methods for Bioscience I

Statistical Methods for Bioscience II

Colloquium in Environmental Toxicology

Special Problems

Principles of Genetics

Glacial and Pleistocene Geology

Landscape Inventory and Evaluation Methods

General Microbiology

General Microbiology Laboratory

Introduction to Plant Pathology

Plant Microbiomes

Hormones and Behavior

General Soil Science

Statistical Methods for Bioscience II

RESIDENCE AND QUALITY OF WORK

• 2.000 GPA in all major courses
• 2.000 GPA on 15 upper-level major credits, taken in residence
• 15 credits in the major, taken on the UW–Madison campus
HONORS IN THE MAJOR
Students may declare Honors in the Conservation Biology Major in consultation with the Conservation Biology undergraduate advisor.

HONORS IN THE CONSERVATION BIOLOGY MAJOR REQUIREMENTS
To earn Honors in the Major in Conservation Biology, students must satisfy both the requirements for the major (above) and the following additional requirements:

- Earn a 3.300 overall university GPA
- Complete at least 16 credits, taken for Honors, with a grade of B or better, in the conservation biology major, to include a two-semester Senior Honors Thesis in an appropriate department

FOOTNOTES
1. Students may NOT apply both ZOOLOGY 425 Behavioral Ecology and PSYCH 449 Animal Behavior in the conservation biology program.
2. Courses in the major numbered 300 through 699 are considered upper level.
3. Examples include Botany, Zoology, Environmental Studies; see the Conservation Biology advisor to verify that your thesis department will be acceptable.

UNIVERSITY DEGREE REQUIREMENTS
Total Degree To receive a bachelor's degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

Residency Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. 'In residence' means on the UW–Madison campus with an undergraduate degree classification. "In residence" credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.

Quality of Work Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES
1. Explain the basic concepts of ecology and evolution and how they underpin and apply to the science of conservation biology.
2. Understand and explain the scientific process as related to conservation biology, including the relevance of theories and how hypotheses are tested.
3. Recognize species within some particular group of organisms and explain key aspects of their ecology, phylogeny, and conservation needs.
4. Apply general ecological principles to assess and address conservation threats to particular species, communities, and ecosystems.
5. Investigate and communicate the connections between the biological and social sciences and humanities as they affect conservation programs and activities.
6. Identify, interpret, and communicate conservation ideas, needs and programs to others.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN
This Sample Four-Year Plan is a tool to assist students and their advisor(s). Students should use it—along with their DARS report, the Degree Planner, and Course Search & Enroll tools—to make their own four-year plan based on their placement scores, credit for transferred courses and approved examinations, and individual interests. As students become involved in athletics, honors, research, student organizations, study abroad, volunteer experiences, and/or work, they might adjust the order of their courses to accommodate these experiences. Students will likely revise their own four-year plan several times during college.

The Conservation Biology road map is a tool to assist you and your advisor in planning your academic career. Use it along with your DARS report and the Course Guide/Schedule of Classes. Your specific program of study could, and probably will, look different. You should customize the road map to fit your unique path at UW–Madison. Consult with your advisor about the best path for you.

Freshman

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication A^1</td>
<td>3</td>
<td>I/A COMP SCI or MATH</td>
<td>3-5</td>
</tr>
<tr>
<td>Quantitative Reasoning A</td>
<td>3-5</td>
<td>Ethnic Studies^2</td>
<td>3</td>
</tr>
<tr>
<td>Foreign Language (if needed)</td>
<td>3-4</td>
<td>Social Science Breadth</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 103</td>
<td>4</td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOOLOGY/BIOLOGY 101 &</td>
<td>5</td>
<td>BOTANY/BIOLOGY 130</td>
<td>5</td>
</tr>
<tr>
<td>ZOOLOGY/BIOLOGY 102^3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTER-LS 210^4</td>
<td>1</td>
<td>Communication B</td>
<td>3</td>
</tr>
<tr>
<td>STAT 301, 371, or 571</td>
<td>3-4</td>
<td>Physical Environment</td>
<td>3-5</td>
</tr>
<tr>
<td>Humanities Breadth</td>
<td>3</td>
<td>Social Science Elective in</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the Major</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecology and Evolution</td>
<td>3-4</td>
<td>Species & Field Biology</td>
<td>3</td>
</tr>
<tr>
<td>Species & Field Biology</td>
<td>3</td>
<td>Humanities Breadth</td>
<td>3-4</td>
</tr>
<tr>
<td>Humanities Breadth</td>
<td>3-4</td>
<td>Social Science Breadth</td>
<td>3-4</td>
</tr>
</tbody>
</table>
Students contemplating graduate work in a biological discipline are advised to take the following:

Although not required for the major, such students are also encouraged to take the following:

ADVISING AND CAREERS

Students in the conservation biology major are assigned to a team of advisors composed of a faculty advisor and the major's student services coordinator. See the major's advising page (https://conservationbiology.ls.wisc.edu/advising/) for a list of advisors and for the student services coordinator information.

The faculty advisor provides guidance specific to the discipline through discussions about undergraduate experiences (e.g., research, coursework, internships) that will help prepare students for graduate work or a career after graduation. The student services coordinator provides guidance specific to the discipline but helps students with major declarations, course selection, registration, DARS, L&S degree and major requirements, and tracking progress toward graduation, as well as connecting students with important resources on campus. Because the major is so broad and involves so much choice, it is important for students to meet early and regularly with their student services coordinator and faculty advisor.

Students contemplating graduate work in a biological discipline are advised to take the following:

1. While most incoming freshman are required to complete coursework to fulfill the Communication A requirement, students may be exempted by approved college coursework while in high school, AP test scores, or placement testing. Students are expected to satisfy this requirement by the end of their first year of undergraduate study.
2. Students are expected to complete the Ethnic Studies requirement within the first 60 credits of undergraduate study.
3. There are three options for Introductory Biology – please consult the Requirements page of this Guide for more information. The Communication B requirement can be fulfilled by completion of ZOOLOGY/BOTANY 152 or BIOCORE 381, BIOCORE 382, or BIOCORE 384 if you choose to take those courses for Introductory Biology.
4. INTER-LS 210 L&S Career Development: Taking Initiative is recommended, but not required for students pursuing the Conservation Biology major.

PERSONAL STATEMENT

The Personal Statement Requirement (https://conservationbiology.ls.wisc.edu/requirements/), completed during your final year, gives you an opportunity to work with your faculty advisor on this writing requirement that connects your UW–Madison experiences to your future. Through your writing and conversations, you will be evaluated on one of the major’s learning goals.

HOW DOES IT WORK?

1. Set up an appointment with your faculty advisor in your final year and indicate the meeting is regarding the personal statement requirement.
2. Send to your faculty advisor, in advance of the meeting, your choice of a cover letter for a position of interest, a personal plan for graduate school, or your own two-page personal statement related to the stated learning goal.
3. Bring along a hard copy of the evaluation form to be completed and signed by your faculty advisor and then submit evaluation to the Conservation Biology Student Services Coordinator, 141 Birge Hall.

L&S CAREER RESOURCES

SuccessWorks at the College of Letters & Science helps students leverage the academic skills learned in their major, certificates, and liberal arts degree; explore and try out different career paths; participate in internships; prepare for the job search and/or graduate school applications; and network with professionals in the field (alumni and employers). In short, SuccessWorks helps students in the College of Letters & Science discover themselves, find opportunities, and develop the skills they need for success after graduation.

SuccessWorks can also assist students in career advising, résumé and cover letter writing, networking opportunities, and interview skills, as well
as course offerings for undergraduates to begin their career exploration early in their undergraduate career.

Students should set up their profiles in Handshake (https://careers.ls.wisc.edu/handshake/) to take care of everything they need to explore career events, manage their campus interviews, and apply to jobs and internships from 200,000+ employers around the country.

• SuccessWorks (https://careers.ls.wisc.edu/)
• Set up a career advising appointment (https://careers.ls.wisc.edu/make-an-appointment/)
• INTER-LS 210 L&S Career Development: Taking Initiative (1 credit, targeted to first- and second-year students)—for more information, see Inter-LS 210: Career Development, Taking Initiative (https://careers.ls.wisc.edu/inter-ls-210-career-development-taking-initiative/)
• INTER-LS 215 Communicating About Careers (3 credits, fulfills Com B General Education Requirement)
• Handshake (https://careers.ls.wisc.edu/handshake/)
• Learn how we’re transforming career preparation: L&S Career Initiative (http://ls.wisc.edu/lsci/)

PEOPLE

Committee of Advisors: Cameron (Botany, chair of major), Givnish (Botany), Hotchkiss (Botany/Environmental Studies), Ives (Zoology), Pigeon (Forest & Wildlife Ecology), Schoville (Entomology), Strier (Anthropology), Vander Zanden, Waller (Botany), Zuckerberg (Forest and Wildlife Ecology)

RESOURCES AND SCHOLARSHIPS

ROLAND H. & MAUDE M. BECKER SCHOLARSHIP

Established by Barbara B. Glass in 1988 in memory of her parents, the Roland & Maude Becker Scholarship (https://conservationbiology.ls.wisc.edu/scholarships/) provides financial assistance to students with a major in conservation biology. The scholarship is a one-time award to help support a conservation experience related to the major. A conservation experience may include an undergraduate research experience, internship experience, study abroad program, etc. Awards will be in the amount of $500 and up to two awards will be awarded per academic year.

SUCCESSWORKS SUMMER INTERNSHIP SCHOLARSHIP

This scholarship (https://careers.ls.wisc.edu/ls-finding-an-internship/money-for-your-internship/) provides amounts ranging from $2,000 to $5,000 each to help students take advantage of and enable them to participate in a first time internship opportunity that is unpaid or provides a limited stipend.

HILLDALE UNDERGRADUATE/FACULTY RESEARCH FELLOWSHIP

The Hilldale Undergraduate/Faculty Research Fellowships (https://awards.advising.wisc.edu/all-scholarships/hilldale-undergraduatefaculty-research-fellowship/) support undergraduate research done in collaboration with UW–Madison faculty or research/instructional academic staff. Approximately 97–100 Hilldale awards are available each year. The student researcher receives $3,000, and faculty/staff research advisor receives $1,000 to help offset research costs (e.g., supplies, faculty or student travel related to the project).

HOLSTROM ENVIRONMENTAL RESEARCH FELLOWSHIP

The Holstrom Environmental Research Fellowship (https://awards.advising.wisc.edu/all-scholarships/holstrom-environmental-research-fellowship/) supports undergraduate research done in collaboration with UW–Madison faculty or research/instructional academic staff. Research proposals must have an environmental focus, and applicants must have at least a junior standing at time of application. Apply spring semester to fund work on the project during the summer or following academic year.

UNDERGRADUATE SYMPOSIUM

The annual Undergraduate Symposium (https://ugradsymposium.wisc.edu/) showcases undergraduate creativity, achievement, research, service-learning and community-based research from all areas of study at UW–Madison including the humanities, fine arts, biological sciences, physical sciences, and social sciences. This past year nearly 700 students presented, displayed or performed their work for members of the university, the surrounding community, family and friends.

WISCONSIN IDEA FELLOWSHIPS

Wisconsin Idea Fellowships (https://morgridge.wisc.edu/students/wisconsin-idea-fellowships/) are awarded annually to undergraduate student projects working toward solving a challenge identified along with local or global community partners. Fellowships are awarded to semester-long or year-long projects designed by an undergraduate student (or group of students) in collaboration with a community organization and a UW–Madison faculty or academic staff member.