Biochemistry, BS (L&S)

Requirements

University General Education Requirements

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatestudytext) section of the Guide.

General Education

- Breadth—Humanities/Literature/Arts: 6 credits
- Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth—Social Studies: 3 credits
- Communication Part A Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

College of Letters & Science Degree Requirements: Bachelor of Science (BS)

Students pursuing a Bachelor of Science degree in the College of Letters & Science must complete all of the requirements below. The College of Letters & Science allows this major to be paired with either the Bachelor of Arts or the Bachelor of Science degree requirements.

Bachelor of Science Degree Requirements

Mathematics

Complete two courses of 3+ credits at the Intermediate or Advanced level in MATH, COMP SCI, or STAT subjects. A maximum of one course in each of COMP SCI and STAT subjects counts toward this requirement.

Language

Complete the third unit of a language other than English.

LS Breadth

Complete:
- 12 credits of Humanities, which must include at least 6 credits of Literature; and
- 12 credits of Social Science; and
- 12 credits of Natural Science, which must include 6 credits of Biological Science and 6 credits of Physical Science.

Liberal Arts and Science Coursework

Complete at least 108 credits.

Depth of Intermediate/Advanced Coursework

Complete at least 60 credits at the Intermediate or Advanced level.

Major

Declare and complete at least one major.

Total Credits

Complete at least 120 credits.

UW-Madison Experience

Complete both:
- 30 credits in residence, overall, and
- 30 credits in residence after the 86th credit.

Quality of Work

- 2.000 in all coursework at UW–Madison
- 2.000 in Intermediate/Advanced level coursework at UW–Madison

Non-L&S Students Pursuing an L&S Major

Non–L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements. They do not need to complete the L&S Degree Requirements above.

Requirements for the Major Mathematics

Mathematics Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221 & MATH 222</td>
<td>Calculus and Analytic Geometry 1 and Calculus and Analytic Geometry 2</td>
<td>9</td>
</tr>
<tr>
<td>MATH 171 & MATH 217 & MATH 222</td>
<td>Calculus with Algebra and Trigonometry I and Calculus with Algebra and Trigonometry II and Calculus and Analytic Geometry 2</td>
<td>14</td>
</tr>
</tbody>
</table>

Chemistry

General Chemistry

Complete one sequence:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 103 & CHEM 104</td>
<td>General Chemistry I and General Chemistry II</td>
<td>9</td>
</tr>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 115 & CHEM 116</td>
<td>Chemical Principles I and Chemical Principles II (satisfies both general and analytical chemistry requirements)</td>
<td>10</td>
</tr>
</tbody>
</table>
Organic Chemistry

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 343</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 344</td>
<td>Introductory Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 345</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

Analytical Chemistry

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 327</td>
<td>Fundamentals of Analytical Science</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 329</td>
<td>Fundamentals of Analytical Science</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 116</td>
<td>Chemical Principles II (satisfies both general and analytical chemistry requirements)</td>
<td>5</td>
</tr>
</tbody>
</table>

Physical Chemistry

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 665</td>
<td>Biophysical Chemistry (Recommended)</td>
<td>3</td>
</tr>
<tr>
<td>& CHEM 563</td>
<td>Physical Chemistry and Physical Chemistry Laboratory I</td>
<td>4</td>
</tr>
</tbody>
</table>

BIOLOGY

Students must complete either Option A (introductory + upper-level biology), or Option B (biocore), for 16 total credits of biological science coursework.

Option A (Introductory and Upper-Level Biology)

Option A Introductory Biology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY/BOTANY/ZOOLOGY 151</td>
<td>Introductory Biology and Introductory Biology (recommended)</td>
<td>10</td>
</tr>
<tr>
<td>BIOLOGY/ZOOLOGY 101 & BIOLOGY/BOTANY/ZOOLOGY 152</td>
<td>Animal Biology and Animal Biology Laboratory and General Botany</td>
<td>10</td>
</tr>
</tbody>
</table>

And Option A Upper-Level Biology

At least 6 credits of upper-level biological science coursework are required (to achieve 16 total credits—more than 6 credits may be required if introductory biology totals less than 10 credits due to transfer credits). Select from the course list below. To see courses offered in specific upcoming semesters, please see the biochemistry website (https://biochem.wisc.edu/undergraduate_program/advanced-biology-courses-undergraduate-program/).

Important: A course may not double count in both the "upper-level biology" and the "biochemistry" requirements for the major. Biochemistry courses on this list can count only for "upper-level biology" if they are above-and-beyond what is needed to fulfill the "biochemistry" portion of the major. For example, if students have taken BIOCHEM 501 (http://guide.wisc.edu/search/?P=BIOCHEM%20501), they will need one advanced biochemistry elective to fulfill the biochemistry requirement, and then any additional biochemistry courses taken can count for upper-level biology.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT&PHY 335</td>
<td>Physiology</td>
<td>5</td>
</tr>
<tr>
<td>ANAT&PHY 337</td>
<td>Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>ANAT&PHY 435</td>
<td>Fundamentals of Human Physiology</td>
<td>5</td>
</tr>
<tr>
<td>AGRONOMY 300</td>
<td>Cropping Systems</td>
<td>3</td>
</tr>
<tr>
<td>AGRONOMY 302</td>
<td>Forage Management and Utilization</td>
<td>3</td>
</tr>
<tr>
<td>AGRONOMY/HORT/SOIL SCI 326</td>
<td>Plant Nutrition Management</td>
<td>3</td>
</tr>
<tr>
<td>AGRONOMY/HORT 338</td>
<td>Plant Breeding and Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>AGRONOMY/BOTANY/HORT 339</td>
<td>Plant Biotechnology: Principles and Techniques I</td>
<td>4</td>
</tr>
<tr>
<td>AGRONOMY/BOTANY/HORT 340</td>
<td>Plant Cell Culture and Genetic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>AGRONOMY/A AE/NUTR SCI 350</td>
<td>World Hunger and Malnutrition</td>
<td>3</td>
</tr>
<tr>
<td>AGRONOMY/BOTANY/SOIL SCI 370</td>
<td>Grassland Ecology</td>
<td>3</td>
</tr>
<tr>
<td>AGRONOMY 377</td>
<td>Global Food Production and Health</td>
<td>3</td>
</tr>
<tr>
<td>AGRONOMY/HORT 501</td>
<td>Principles of Plant Breeding</td>
<td>3</td>
</tr>
<tr>
<td>AGRONOMY/ATM OCN/SOIL SCI 532</td>
<td>Environmental Biophysics</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI/FOOD SCI 305</td>
<td>Introduction to Meat Science and Technology</td>
<td>4</td>
</tr>
<tr>
<td>AN SCI/DY SCI/NUTR SCI 311</td>
<td>Comparative Animal Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI 314</td>
<td>Poultry Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI/DY SCI 320</td>
<td>Animal Health and Disease</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI/DY SCI 361</td>
<td>Introduction to Animal and Veterinary Genetics</td>
<td>2</td>
</tr>
<tr>
<td>AN SCI/DY SCI 362</td>
<td>Veterinary Genetics</td>
<td>2</td>
</tr>
<tr>
<td>AN SCI/DY SCI 363</td>
<td>Principles of Animal Breeding</td>
<td>2</td>
</tr>
<tr>
<td>AN SCI/DY SCI 370</td>
<td>Livestock Production and Health in Agricultural Development</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI/DY SCI 414</td>
<td>Ruminant Nutrition & Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI 415</td>
<td>Application of Monogastric Nutrition Principles</td>
<td>2</td>
</tr>
<tr>
<td>AN SCI 431</td>
<td>Beef Cattle Production</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI 432</td>
<td>Swine Production</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI/DY SCI 434</td>
<td>Reproductive Physiology</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI 503</td>
<td>Avian Physiology</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI 508</td>
<td>Poultry Products Technology</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI 511</td>
<td>Breeder Flock and Hatchery</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI 512</td>
<td>Management for Avian Health</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>AN SCI/FOOD SCI 515</td>
<td>Commercial Meat Processing</td>
<td>2</td>
</tr>
<tr>
<td>AN SCI/F&W ECOL/ZOOLOGY 520</td>
<td>Ornithology</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI/F&W ECOL/ZOOLOGY 521</td>
<td>Birds of Southern Wisconsin</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI 610</td>
<td>Quantitative Genetics</td>
<td>3</td>
</tr>
<tr>
<td>AN SCI/NUTR SCI 626</td>
<td>Experimental Diet Design</td>
<td>1</td>
</tr>
<tr>
<td>B M E/MED PHYS/PHMCOL-M/PHYSICS/RADIOL 619</td>
<td>Microscopy of Life</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/NUTR SCI 510</td>
<td>Nutritional Biochemistry and Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/NUTR SCI 560</td>
<td>Principles of Human Disease and Biotechnology</td>
<td>2</td>
</tr>
<tr>
<td>BIOCHEM 570</td>
<td>Computational Modeling of Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/M M & I 575</td>
<td>Biology of Viruses</td>
<td>2</td>
</tr>
<tr>
<td>BIOCHEM 601</td>
<td>Protein and Enzyme Structure and Function</td>
<td>2</td>
</tr>
<tr>
<td>BIOCHEM/B M I/BMOLCHEM/MATH 609</td>
<td>Mathematical Methods for Systems Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/GENETICS/MICROBIO 612</td>
<td>Prokaryotic Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/NUTR SCI 619</td>
<td>Advanced Nutrition: Intermediary Metabolism of Macronutrients</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/GENETICS/MD GENET 620</td>
<td>Eukaryotic Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/BOTANY 621</td>
<td>Plant Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM 625</td>
<td>Mechanisms of Action of Vitamins and Minerals</td>
<td>2</td>
</tr>
<tr>
<td>BIOCHEM/NUTR SCI 645</td>
<td>Molecular Control of Metabolism and Metabolic Disease</td>
<td>3</td>
</tr>
<tr>
<td>BSE 349</td>
<td>Quantitative Techniques for Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td>BSE 364</td>
<td>Engineering Properties of Food and Biological Materials</td>
<td>3</td>
</tr>
<tr>
<td>BSE 365</td>
<td>Measurements and Instrumentation for Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td>BSE/ENVI ST R 367</td>
<td>Renewable Energy Systems</td>
<td>3</td>
</tr>
<tr>
<td>BSE 460</td>
<td>Biorefining: Energy and Products from Renewable Resources</td>
<td>3</td>
</tr>
<tr>
<td>BSE 461</td>
<td>Food and Bioprocessing Operations</td>
<td>3</td>
</tr>
<tr>
<td>BSE 472</td>
<td>Sediment and Bio-Nutrient Engineering and Management</td>
<td>3</td>
</tr>
<tr>
<td>BMOLCHEM/MICROBIO 668</td>
<td>Microbiology at Atomic Resolution</td>
<td>3</td>
</tr>
<tr>
<td>B M I/STAT 541</td>
<td>Introduction to Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>B M I/COMP SCI 576</td>
<td>Introduction to Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY 300</td>
<td>Plant Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>BOTANY 305</td>
<td>Plant Morphology and Evolution</td>
<td>4</td>
</tr>
<tr>
<td>BOTANY 330</td>
<td>Algae</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/PL PATH 332</td>
<td>Fungi</td>
<td>4</td>
</tr>
<tr>
<td>BOTANY/AGRONOMY/HORT 339</td>
<td>Plant Biotechnology: Principles and Techniques I</td>
<td>4</td>
</tr>
<tr>
<td>BOTANY 400</td>
<td>Plant Systematics</td>
<td>4</td>
</tr>
<tr>
<td>BOTANY 401</td>
<td>Vascular Flora of Wisconsin</td>
<td>4</td>
</tr>
<tr>
<td>BOTANY/F&W ECOL 402</td>
<td>Dendrology: Woody Plant Identification and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/ANTHRO/ZOOLOGY 410</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY 422</td>
<td>Plant Geography</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/F&W ECOL 455</td>
<td>The Vegetation of Wisconsin</td>
<td>4</td>
</tr>
<tr>
<td>BOTANY/F&W ECOL/ZOOLOGY 460</td>
<td>General Ecology</td>
<td>4</td>
</tr>
<tr>
<td>BOTANY/ENTOM/ZOOLOGY 473</td>
<td>Plant-Insect Interactions</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/AMER IND/ANTHRO 474</td>
<td>Ethnobotany</td>
<td>3-4</td>
</tr>
<tr>
<td>BOTANY 500</td>
<td>Plant Physiology</td>
<td>3-4</td>
</tr>
<tr>
<td>BOTANY/ENTOM/PL PATH 505</td>
<td>Plant-Microbe Interactions: Molecular and Ecological Aspects</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/PL PATH 563</td>
<td>Phylogenetic Analysis of Molecular Data</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/HORT/SOIL SCI 626</td>
<td>Mineral Nutrition of Plants</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/ENVIR ST/F&W ECOL/ZOOLOGY 651</td>
<td>Conservation Biology</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/GENETICS/M M & I/PL PATH 655</td>
<td>Biology and Genetics of Fungi</td>
<td>3</td>
</tr>
<tr>
<td>BOTANY/LAND ARC 670</td>
<td>Adaptive Restoration Lab</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 575</td>
<td>Advanced Topics in Chemistry (Topics in Chemical Biology)</td>
<td>1-4</td>
</tr>
<tr>
<td>CRB 625</td>
<td>Stem Cell Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CRB 640</td>
<td>Fundamentals of Stem Cell and Regenerative Biology</td>
<td>3</td>
</tr>
<tr>
<td>CRB 650</td>
<td>Molecular and Cellular Organogenesis</td>
<td>3</td>
</tr>
<tr>
<td>DY SCI 378</td>
<td>Lactation Physiology</td>
<td>3</td>
</tr>
<tr>
<td>DY SCI 535</td>
<td>Dairy Farm Management Practicum</td>
<td>3</td>
</tr>
<tr>
<td>ENTOM/ZOOLOGY 302</td>
<td>Introduction to Entomology</td>
<td>4</td>
</tr>
<tr>
<td>ENTOM 321</td>
<td>Physiology of Insects</td>
<td>3</td>
</tr>
<tr>
<td>ENTOM 331</td>
<td>Taxonomy of Mature Insects</td>
<td>4</td>
</tr>
<tr>
<td>ENTOM 351</td>
<td>Principles of Economic Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTOM/ZOOLOGY 371</td>
<td>Medical Entomology</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENTOM 432</td>
<td>Taxonomy and Bionomics of Immature Insects</td>
<td>4</td>
</tr>
<tr>
<td>ENTOM/</td>
<td>Insects in Forest Ecosystem</td>
<td>2</td>
</tr>
<tr>
<td>F&W ECOL 500</td>
<td>Function and Management</td>
<td></td>
</tr>
<tr>
<td>ENTOM/</td>
<td>Theoretical Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 540</td>
<td>Molecular Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/</td>
<td>Wetlands Ecology</td>
<td>3</td>
</tr>
<tr>
<td>LAND ARC 361</td>
<td>Introduction to Environmental Health</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/</td>
<td>Air Pollution and Human Health</td>
<td>3</td>
</tr>
<tr>
<td>POP HLTH 471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVIR ST/</td>
<td>Natural Resources Policy</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVIR ST/</td>
<td>Bioclimatology</td>
<td>3</td>
</tr>
<tr>
<td>ATM OCN 520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD SCI/</td>
<td>Food Microbiology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MICROBIO 324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD SCI/</td>
<td>Food Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD SCI 410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD SCI 440</td>
<td>Principles of Food Engineering</td>
<td>3</td>
</tr>
<tr>
<td>FOOD SCI 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD SCI 514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD SCI 515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD SCI 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD SCI 611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F&W ECOL 300</td>
<td>Forest Measurements</td>
<td>4</td>
</tr>
<tr>
<td>F&W ECOL 306</td>
<td>Terrestrial Vertebrates: Life History and Ecology</td>
<td>4</td>
</tr>
<tr>
<td>F&W ECOL 318</td>
<td>Principles of Wildlife Ecology</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL/</td>
<td>Human/Animal Relationships: Biological and</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 335</td>
<td>Philosophical Issues</td>
<td></td>
</tr>
<tr>
<td>F&W ECOL/</td>
<td>Extinction of Species</td>
<td>3</td>
</tr>
<tr>
<td>ENVIR ST/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F&W ECOL 379</td>
<td>Principles of Wildlife Management</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 401</td>
<td>Physiological Animal Ecology</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 404</td>
<td>Wildlife Damage Management</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 410</td>
<td>Principles of Silviculture</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 415</td>
<td>Tree Physiology</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL/</td>
<td>Diseases of Wildlife</td>
<td>3</td>
</tr>
<tr>
<td>SURG SCI 548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F&W ECOL 550</td>
<td>Forest Ecology</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 561</td>
<td>Wildlife Management Techniques</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL/</td>
<td>Principles of Landscape Ecology</td>
<td>2</td>
</tr>
<tr>
<td>LAND ARC/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F&W ECOL 590</td>
<td>Integrated Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL/</td>
<td>Ecotoxicology: The Chemical Players</td>
<td>1</td>
</tr>
<tr>
<td>AGRONOMY/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTOM/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M&ENVTOX 632</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F&W ECOL/</td>
<td>Ecotoxicology: Impacts on Individuals</td>
<td>1</td>
</tr>
<tr>
<td>AGRONOMY/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTOM/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M&ENVTOX 633</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F&W ECOL/</td>
<td>Ecotoxicology: Impacts on Populations, Communities and Ecosystems</td>
<td>1</td>
</tr>
<tr>
<td>AGRONOMY/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTOM/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M&ENVTOX 634</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F&W ECOL/</td>
<td>Decision Methods for Natural Resource Managers</td>
<td>3</td>
</tr>
<tr>
<td>A A E 652</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F&W ECOL 655</td>
<td>Animal Population Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>GENWS 533</td>
<td>Special Topics in Gender and Biology</td>
<td>3</td>
</tr>
<tr>
<td>GENETICS 466</td>
<td>Principles of Genetics</td>
<td>3</td>
</tr>
<tr>
<td>GENETICS 467</td>
<td>General Genetics 1</td>
<td>3</td>
</tr>
<tr>
<td>GENETICS 468</td>
<td>General Genetics 2</td>
<td>3</td>
</tr>
<tr>
<td>GENETICS 525</td>
<td>Epigenetics</td>
<td>3</td>
</tr>
<tr>
<td>GENETICS 545</td>
<td>Genetics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>GENETICS/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HORT 550</td>
<td>Molecular Approaches for Potential Crop Improvement</td>
<td>3</td>
</tr>
<tr>
<td>GENETICS/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD GENET 565</td>
<td>Human Genetics</td>
<td>3</td>
</tr>
<tr>
<td>GENETICS 566</td>
<td>Advanced Genetics</td>
<td>3</td>
</tr>
<tr>
<td>HORT 320</td>
<td>Environment of Horticultural Plants</td>
<td>3</td>
</tr>
<tr>
<td>HORT/</td>
<td>Principles of Plant Breeding</td>
<td>3</td>
</tr>
<tr>
<td>AGRONOMY 501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M M & I 301</td>
<td>Pathogenic Bacteriology</td>
<td>2</td>
</tr>
<tr>
<td>M M & I 341</td>
<td>Immunology</td>
<td>3</td>
</tr>
<tr>
<td>M M & I/ENTOM/PATH-BIO/ZOOLOGY 350</td>
<td>Parasitology</td>
<td>3</td>
</tr>
<tr>
<td>M M & I/PATH-BIO 528</td>
<td>Immunology</td>
<td>3</td>
</tr>
<tr>
<td>M M & I 554</td>
<td>Emerging Infectious Diseases and Bioterrorism</td>
<td>2</td>
</tr>
<tr>
<td>MED PHYS/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HONCOL 410</td>
<td>Radiobiology</td>
<td>2-3</td>
</tr>
<tr>
<td>MED PHYS/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B M E/HONCOL/PHYSICS 501</td>
<td>Radiation Physics and Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 303</td>
<td>Biology of Microorganisms</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 304</td>
<td>Biology of Microorganisms Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MICROBIO 305</td>
<td>Critical Analyses in Microbiology</td>
<td>1</td>
</tr>
<tr>
<td>MICROBIO 330</td>
<td>Host-Parasite Interactions</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO/AN SCI/BOTANY 335</td>
<td>The Microbiome of Plants, Animals, and Humans</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 345</td>
<td>Introduction to Disease Biology</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 357</td>
<td>General Bioinformatics for Microbiologists</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL SCI 425</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 450</td>
<td>Diversity, Ecology and Evolution of Microorganisms</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 470</td>
<td>Microbial Genetics & Molecular Machines</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>MICROBIO 520</td>
<td>Planetary Microbiology: What Life Here Tells Us About Life Out There</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO/</td>
<td>Soil Microbiology and Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL SCI 523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROBIO 525</td>
<td>Field Studies of Planetary Microbiology and Life in the Universe</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 526</td>
<td>Physiology of Microorganisms</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 527</td>
<td>Advanced Laboratory Techniques in Microbiology</td>
<td>2</td>
</tr>
<tr>
<td>MICROBIO 551</td>
<td>Capstone Research Project in Microbiology</td>
<td>2</td>
</tr>
<tr>
<td>MICROBIO 607</td>
<td>Advanced Microbial Genetics</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 626</td>
<td>Microbial and Cellular Metabolomics</td>
<td>3</td>
</tr>
<tr>
<td>MICROBIO 632</td>
<td>Industrial Microbiology/ Biotechnology</td>
<td>2</td>
</tr>
<tr>
<td>NTP/NEURODPT</td>
<td>Cellular and Molecular Neuroscience</td>
<td>4</td>
</tr>
<tr>
<td>610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTP/NEURODPT/</td>
<td>Systems Neuroscience</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTP/NEURODPT</td>
<td>Molecular and Cellular Mechanisms of Memory</td>
<td>3</td>
</tr>
<tr>
<td>629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUTR SCI 332</td>
<td>Human Nutritional Needs</td>
<td>3</td>
</tr>
<tr>
<td>NUTR SCI 431</td>
<td>Nutrition in the Life Span</td>
<td>3</td>
</tr>
<tr>
<td>ONCOLOGY 401</td>
<td>Introduction to Experimental Oncology</td>
<td>2</td>
</tr>
<tr>
<td>ONCOLOGY/</td>
<td>Toxicology I</td>
<td>3</td>
</tr>
<tr>
<td>M&ENVTOX/PHM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCI/PHMCOL-M/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POP HLTH 625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHM SCI 310</td>
<td>Drugs and Their Actions</td>
<td>2</td>
</tr>
<tr>
<td>PHEM SCI/BME</td>
<td>Biological Interactions with Materials</td>
<td>3</td>
</tr>
<tr>
<td>430</td>
<td>Microscopy of Life</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS/BME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MED PHYS/PHM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL/M/RADIOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL PATH 300</td>
<td>Introduction to Plant Pathology</td>
<td>4</td>
</tr>
<tr>
<td>PL PATH/</td>
<td>Soil Biology</td>
<td>3</td>
</tr>
<tr>
<td>SOIL SCI 323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL PATH 517</td>
<td>Plant Disease Resistance</td>
<td>2-3</td>
</tr>
<tr>
<td>PL PATH 558</td>
<td>Biology of Plant Pathogens</td>
<td>3</td>
</tr>
<tr>
<td>PL PATH 559</td>
<td>Diseases of Economic Plants</td>
<td>3</td>
</tr>
<tr>
<td>PL PATH 602</td>
<td>Ecology, Epidemiology and Control of Plant Diseases</td>
<td>3</td>
</tr>
<tr>
<td>PL PATH 622</td>
<td>Plant-Bacterial Interactions</td>
<td>2-3</td>
</tr>
<tr>
<td>PL PATH/M&M</td>
<td>General Virology-Multiplication of Viruses</td>
<td>3</td>
</tr>
<tr>
<td>ONCOLOGY 640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYCH 454</td>
<td>Behavioral Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 513</td>
<td>Hormones, Brain, and Behavior</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 612</td>
<td>Neuropharmacology</td>
<td>3</td>
</tr>
<tr>
<td>SOIL SCI/</td>
<td>Environmental Biogeochemistry</td>
<td>3</td>
</tr>
<tr>
<td>F&W ECOL 451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL SCI/</td>
<td>Microbiology of Waterborne</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENGR 623</td>
<td>Pathogens and Indicator Organisms</td>
<td></td>
</tr>
<tr>
<td>SOIL SCI/CIV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 631</td>
<td>Toxins in the Environment: Sources, Distribution, Fate, & Effects</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 300</td>
<td>Invertebrate Biology and Evolution Lab</td>
<td>2</td>
</tr>
<tr>
<td>ZOOLOGY 301</td>
<td>Invertebrate Biology and Evolution Lab</td>
<td>2</td>
</tr>
<tr>
<td>ZOOLOGY 304</td>
<td>Marine Biology</td>
<td>2</td>
</tr>
<tr>
<td>ZOOLOGY/ENVIR</td>
<td>Laboratory for Limnology-Conservation of Aquatic Resources</td>
<td>2-3</td>
</tr>
<tr>
<td>ST 315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 425</td>
<td>Behavioral Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 430</td>
<td>Comparative Anatomy of Vertebrates</td>
<td>5</td>
</tr>
<tr>
<td>ZOOLOGY 470</td>
<td>Introduction to Animal Development</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 504</td>
<td>Modeling Animal Landscapes</td>
<td>3-5</td>
</tr>
<tr>
<td>ZOOLOGY/ENVIR</td>
<td>Ecology of Fishes</td>
<td>3</td>
</tr>
<tr>
<td>ST 510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY/ENVIR</td>
<td>Ecology of Fishes Lab</td>
<td>2</td>
</tr>
<tr>
<td>ST 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY/PSYCH</td>
<td>Neurobiology</td>
<td>3</td>
</tr>
<tr>
<td>523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY/GEOSCI</td>
<td>Paleobiology</td>
<td>3</td>
</tr>
<tr>
<td>541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY/GEOSCI</td>
<td>Invertebrate Paleontology</td>
<td>3</td>
</tr>
<tr>
<td>542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 555</td>
<td>Laboratory in Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 570</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 603</td>
<td>Endocrinology</td>
<td>3-4</td>
</tr>
<tr>
<td>ZOOLOGY 611</td>
<td>Comparative and Evolutionary Physiology</td>
<td>3</td>
</tr>
<tr>
<td>ZOOLOGY 612</td>
<td>Comparative Physiology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ZOOLOGY/ANTHRO/</td>
<td>Biology of Mind</td>
<td>3</td>
</tr>
<tr>
<td>NTP/PSYCH 619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOLOGY 625</td>
<td>Development of the Nervous System</td>
<td>2</td>
</tr>
</tbody>
</table>

Option B (Biocore)

Biocore is an honors-level, integrated sequence of lecture and lab courses that covers introductory and intermediate biology topics. Students must apply and be accepted to the program to take BIOCORE classes.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOCORE 381</td>
<td>Evolution, Ecology, and Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOCORE 383</td>
<td>Cellular Biology</td>
<td></td>
</tr>
<tr>
<td>BIOCORE 485</td>
<td>Principles of Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOCORE 587</td>
<td>Biological Interactions</td>
<td>3</td>
</tr>
<tr>
<td>BIOCORE 382</td>
<td>Evolution, Ecology, and Genetics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>BIOCORE 384</td>
<td>Cellular Biology Laboratory</td>
<td></td>
</tr>
</tbody>
</table>
BIOCHEMISTRY

One set of introductory coursework and the capstone course are required, for a total of three BIOCHEM courses.

Introductory Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOCHEM 507 & BIOCHEM 508</td>
<td>General Biochemistry I and General Biochemistry II (recommended)</td>
<td>6-7</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOCHEM 501</td>
<td>Introduction to Biochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

And one of the following advanced biochemistry electives:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOCHEM/BMOLCHEM/MATH 609</td>
<td>Biological and Biochemical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/GENETICS/MICROBIO 612</td>
<td>Computational Modeling of Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/BMOLCHEM/MATH 620</td>
<td>Plant Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/BOTANY 625</td>
<td>Mechanisms of Action of Vitamins and Minerals</td>
<td>3</td>
</tr>
<tr>
<td>BIOCHEM/NUTR SCI 645</td>
<td>Molecular Control of Metabolism and Metabolic Disease</td>
<td>3</td>
</tr>
</tbody>
</table>

Capstone

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOCHEM 551</td>
<td>Biochemical Methods</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits 4

RESIDENCE AND QUALITY OF WORK

- 2.000 GPA in all BIOCHEM and major courses
- 2.000 GPA on at least 15 upper-level major credits in Residence.
- 15 credits in BIOCHEM, taken on campus

1 Students should consult with their advisor to discuss options if they have credit for PHYSICS 103 (http://guide.wisc.edu/search/?P=PHYSICS%20103) and PHYSICS 104 (http://guide.wisc.edu/search/?P=PHYSICS%20104).

2 Major courses numbered 300-699 are considered Upper-Level in the major for purposes of this requirement.

HONORS IN THE MAJOR

Students may declare Honors in the Biochemistry Major in consultation with their Biochemistry undergraduate advisor. To be admitted to Honors in the Major in Biochemistry, students must have declared a major in Biochemistry and have a 3.300 overall university GPA.

HONORS IN THE MAJOR IN BIOCHEMISTRY: REQUIREMENTS

To earn honors in the major in biochemistry, students must satisfy the requirements for the major (above) as well as the following requirements. All courses used for honors in the major requirements must receive "B" or better grades to fulfill requirements.

- Earn a 3.300 University GPA
- Earn a 3.300 GPA for all BIOCHEM courses, and all courses accepted in the major
- Complete BIOCHEM 507 and BIOCHEM 508 for Honors
- Complete a two-semester Senior Honors Thesis for 6 credits total
- Complete at least 14 credits of any combination of the following coursework:
 - Honors courses that would fulfill the Biology or Biochemistry requirements in the major (see above)
 - Statistics coursework (does not need to be taken for honors): STAT 301, STAT 371, or STAT/B M I 541
 - Biochemistry elective coursework beyond the major requirements (does not need to be taken for honors): NUTR SCI/BIOCHEM 510, BIOCHEM/NUTR SCI 560, BIOCHEM 570 M & I/BIOCHEM 575, BIOCHEM 601, MATH/ B M I/BIOCHEM/BMOLCHEM 609, MICROBIO/BIOCHEM/GENETICS 612, MD GENET/BIOCHEM/GENETICS 620, BOTANY/BIOCHEM 621, BIOCHEM 625, BIOCHEM/NUTR SCI 645
 - Honors coursework in MATH, CHEM, or PHYSICS, from the list below:

Math

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 341</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 375</td>
<td>Topics in Multi-Variable Calculus and Linear Algebra</td>
<td>5</td>
</tr>
<tr>
<td>MATH 376</td>
<td>Topics in Multi-Variable Calculus and Differential Equations</td>
<td>5</td>
</tr>
</tbody>
</table>
MATH 521 Analysis I 3
MATH 522 Analysis II 3
MATH 541 Modern Algebra 3
MATH 542 Modern Algebra 3

Chemistry

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 109</td>
<td>Advanced General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 115</td>
<td>Chemical Principles I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 116</td>
<td>Chemical Principles II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 343</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 345</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 344</td>
<td>Introductory Organic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 329</td>
<td>Fundamentals of Analytical Science</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 547</td>
<td>Advanced Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 561</td>
<td>Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 565</td>
<td>Biophysical Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 563</td>
<td>Physical Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 562</td>
<td>Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 564</td>
<td>Physical Chemistry Laboratory II</td>
<td>1</td>
</tr>
</tbody>
</table>

Physics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 201</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 202</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 207</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 208</td>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 241</td>
<td>Introduction to Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 247</td>
<td>A Modern Introduction to Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 248</td>
<td>A Modern Introduction to Physics</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 249</td>
<td>A Modern Introduction to Physics</td>
<td>4</td>
</tr>
</tbody>
</table>

UNIVERSITY DEGREE REQUIREMENTS

Total Degree: To receive a bachelor's degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

Residency: Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. “In residence” means on the UW–Madison campus with an undergraduate degree classification. “In residence” credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.

Quality of Work: Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.