Our graduates discover that computer science (CS) opens up a world of possibilities.

Computer scientists enjoy exceptional career opportunities, in settings ranging from large, established companies to adventurous new start-ups. They are also well qualified to pursue graduate study in a number of fields.

Our students are creative, analytical problem-solvers. This is a rich, collaborative and varied field that you will find challenging, no matter where your individual interests lie.

And there is more to CS than programming. While software engineering is an important skill, computer scientists also work with robots and other physical devices, design hardware that runs faster and more efficiently, and apply machine learning techniques to gain insight from large data sets—to name just a few examples.

Because CS has become highly interconnected with medicine, business and many other fields, it is a great fit with other interests you may have. You will enjoy a strong career outlook while having an impact on society.

HOW TO GET IN

DECLARATION REQUIREMENTS

To declare the computer sciences major, students must meet the following requirements:

- Completion of COMP SCI 300 and either MATH 222 or MATH 276
- Grade of BC or higher in one of these introductory programming courses, taken at UW-Madison: COMP SCI 300, COMP SCI/E C E 354 or COMP SCI 400
- 2.250 GPA or higher among the first completed attempts of these courses: COMP SCI 300 and either MATH 222 or MATH 276

For purposes of computer sciences major declaration requirements, GPA is calculated with UW-Madison courses only, and does not include repeated coursework.

If a student needs additional coursework to meet the 2.250 GPA requirement, COMP SCI/MATH 240, COMP SCI/E C E 354, and/or COMP SCI 400 Programming III may also be used.

Students having difficulties meeting the above requirements should schedule a meeting with a computer sciences advisor to discuss alternatives.

For instructions on declaring the major, see the Department of Computer Sciences website (https://www.cs.wisc.edu/undergraduate/ba-bs-in-compsci/).

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin—Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatetystudytext) section of the Guide.

General Education

- Breadth—Humanities/Literature/Arts: 6 credits
- Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth—Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

COLLEGE OF LETTERS & SCIENCE

BREADTH AND DEGREE REQUIREMENTS: BACHELOR OF ARTS (B.A.)

Students pursuing a bachelor of arts degree in the College of Letters & Science must complete all of the requirements below. The College of Letters & Science allows this major to be paired with either a bachelor of arts or a bachelor of science curriculum. View a comparison of the degree requirements here. (https://pubs.wisc.edu/home/archives/ug15/images/babs2009.pdf)

BACHELOR OF ARTS DEGREE REQUIREMENTS

Mathematics

Fulfilled with completion of University General Education requirements Quantitative Reasoning a (QR A) and Quantitative Reasoning b (QR B) coursework. Please note that some majors may require students to complete additional math coursework beyond the B.A. mathematics requirement.

Foreign Language

- Complete the fourth unit of a foreign language; OR
- Complete the third unit of a foreign language and the second unit of an additional foreign language

Note: A unit is one year of high school work or one semester/term of college work.
L&S Breadth

- Humanities, 12 credits: 6 of the 12 credits must be in literature
- Social Sciences, 12 credits
- Natural Sciences, 12 credits: must include one 3+ credit course in the biological sciences; must include one 3+ credit course in the physical sciences

Liberal Arts and Science Coursework

108 credits

Depth of Intermediate/Advanced work

60 intermediate or advanced credits

Major

Declare and complete at least one (1) major

Total Credits

120 credits

UW-Madison Experience

30 credits in residence, overall

Minimum GPAs

2.000 in all coursework at UW–Madison

NON–L&S STUDENTS PURSUING AN L&S MAJOR

Non–L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements and do not need to complete the L&S breadth and degree requirements above. Please note that the following special degree programs are not considered majors so are not available to non–L&S degree-seeking candidates:

- Applied Mathematics, Engineering and Physics (Bachelor of Science–Applied Mathematics, Engineering and Physics)
- Journalism (Bachelor of Arts–Journalism; Bachelor of Science–Journalism)
- Music (Bachelor of Music)
- Social Work (Bachelor of Social Work)

REQUIREMENTS FOR THE MAJOR

BASIC COMPUTER SCIENCES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI/</td>
<td>Introduction to Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP SCI/E C  E 252</td>
<td>Introduction to Computer Engineering</td>
<td>2</td>
</tr>
<tr>
<td>COMP SCI 300</td>
<td>Programming II</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI/E C  E 354</td>
<td>Machine Organization and Programming</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 400</td>
<td>Programming III</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

BASIC CALCULUS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete one of these sequences:</td>
<td></td>
<td>9-14</td>
</tr>
<tr>
<td>MATH 221 &amp; MATH 222</td>
<td>Calculus and Analytic Geometry 1 and Calculus and Analytic Geometry 2</td>
<td></td>
</tr>
</tbody>
</table>

MATH 171 & MATH 217 & MATH 222

- Calculus with Algebra and Trigonometry I
- and Calculus with Algebra and Trigonometry II
- and Calculus and Analytic Geometry 2

MATH 275 & MATH 276

- Topics in Calculus I
- and Topics in Calculus II

Total Credits

9-14

ADDITIONAL MATHEMATICS (BEYOND CALCULUS)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 340 or MATH 375</td>
<td>Elementary Matrix and Linear Algebra 1</td>
<td></td>
</tr>
<tr>
<td>STAT 324</td>
<td>Introductory Applied Statistics for Engineers</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 412</td>
<td>Introduction to Numerical Methods 2</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/E C  E/ MATH 435</td>
<td>Introduction to Cryptography</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/ MATH 513</td>
<td>Numerical Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/ MATH 514</td>
<td>Numerical Analysis</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E/ MATH/STAT 525</td>
<td>Linear Optimization</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E 526</td>
<td>Advanced Linear Programming</td>
<td></td>
</tr>
<tr>
<td>E C 331</td>
<td>Introduction to Random Signal Analysis and Statistics</td>
<td></td>
</tr>
<tr>
<td>MATH 234 or MATH 375</td>
<td>Calculus–Functions of Several Variables 1</td>
<td></td>
</tr>
<tr>
<td>MATH 319</td>
<td>Techniques in Ordinary Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 320 or MATH 375</td>
<td>Linear Algebra and Differential Equations 1</td>
<td></td>
</tr>
<tr>
<td>MATH 321</td>
<td>Applied Mathematical Analysis</td>
<td></td>
</tr>
<tr>
<td>MATH 322</td>
<td>Applied Mathematical Analysis</td>
<td></td>
</tr>
<tr>
<td>MATH 331</td>
<td>An Introduction to Probability and Markov Chain Models</td>
<td></td>
</tr>
<tr>
<td>MATH 341</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 376</td>
<td>Topics in Multi-Variable Calculus and Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH/STAT 431</td>
<td>Introduction to the Theory of Probability</td>
<td></td>
</tr>
<tr>
<td>MATH 443</td>
<td>Applied Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 461</td>
<td>College Geometry I</td>
<td></td>
</tr>
<tr>
<td>MATH/COMP SCI/ STAT 475</td>
<td>Introduction to Combinatorics</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>MATH 521</td>
<td>Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 541</td>
<td>Modern Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 542</td>
<td>Modern Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 567</td>
<td>Modern Number Theory</td>
<td></td>
</tr>
<tr>
<td>MATH/PHILO 571</td>
<td>Mathematical Logic</td>
<td></td>
</tr>
<tr>
<td>STAT/MATH 309</td>
<td>Introduction to Probability and Mathematical Statistics I</td>
<td></td>
</tr>
<tr>
<td>STAT/MATH 310</td>
<td>Introduction to Probability and Mathematical Statistics II</td>
<td></td>
</tr>
<tr>
<td>STAT 311</td>
<td>Introduction to Theory and Methods of Mathematical Statistics I</td>
<td></td>
</tr>
<tr>
<td>STAT 312</td>
<td>Introduction to Theory and Methods of Mathematical Statistics II</td>
<td></td>
</tr>
</tbody>
</table>

1 MATH 375 Topics in Multi-Variable Calculus and Linear Algebra will not meet the requirement if a student already has credit for MATH 234 Calculus--Functions of Several Variables, MATH 320 Linear Algebra and Differential Equations or MATH 340 Elementary Matrix and Linear Algebra.

**ADVANCED COMPUTER SCIENCE COURSES**

**THEORY OF COMPUTER SCIENCE**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete one:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP SCI 577</td>
<td>Introduction to Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 520</td>
<td>Introduction to Theory of Computing</td>
<td></td>
</tr>
</tbody>
</table>

**SOFTWARE & HARDWARE**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete two:</td>
<td></td>
<td>6-8</td>
</tr>
<tr>
<td>COMP SCI 407</td>
<td>Foundations of Mobile Systems and Applications</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/E C E 506</td>
<td>Software Engineering</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 536</td>
<td>Introduction to Programming Languages</td>
<td></td>
</tr>
<tr>
<td>or COMP SCI 531</td>
<td>Introduction to the Theory and Design of Programming Languages</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 537</td>
<td>Introduction to Operating Systems</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/E C E 552</td>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 564</td>
<td>Database Management Systems: Design and Implementation</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 640</td>
<td>Introduction to Computer Networks</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 642</td>
<td>Introduction to Information Security</td>
<td></td>
</tr>
</tbody>
</table>

**APPLICATIONS**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete one:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 412</td>
<td>Introduction to Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E/MATH 425</td>
<td>Introduction to Combinatorial Optimization</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/MATH 513</td>
<td>Numerical Linear Algebra</td>
<td></td>
</tr>
</tbody>
</table>

2 In every case, a course used toward one requirement may not be used again toward another requirement. For example, if COMP SCI 412 is applied to the ADDITIONAL MATH (BEYOND CALCULUS) requirement, it cannot also apply to the APPLICATIONS requirement.

**ELECTIVES**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete two:</td>
<td></td>
<td>6-8</td>
</tr>
<tr>
<td>COMP SCI 407</td>
<td>Foundations of Mobile Systems and Applications</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 412</td>
<td>Introduction to Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E/MATH 425</td>
<td>Introduction to Combinatorial Optimization</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/E C E/MATH 435</td>
<td>Introduction to Cryptography</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E STAT 471</td>
<td>Introduction to Computational Statistics</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/MATH/STAT 475</td>
<td>Introduction to Combinatorics</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/E C E/MATH 506</td>
<td>Software Engineering</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/MATH 513</td>
<td>Numerical Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/MATH 514</td>
<td>Numerical Analysis</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 520</td>
<td>Introduction to Theory of Computing</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E/MATH 524</td>
<td>Introduction to Optimization</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/I SY E/MATH/STAT 525</td>
<td>Linear Optimization</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/E C E/MATH 532</td>
<td>Matrix Methods in Machine Learning</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/E C E/MATH 533</td>
<td>Image Processing</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 534</td>
<td>Computational Photography</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 536</td>
<td>Introduction to Programming Languages and Compilers</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 537</td>
<td>Introduction to Operating Systems</td>
<td></td>
</tr>
</tbody>
</table>
**COMP SCI 538**  Introduction to the Theory and Design of Programming Languages

**COMP SCI/E C E/M E 539**  Introduction to Artificial Neural Networks

**COMP SCI 540**  Introduction to Artificial Intelligence

**COMP SCI 545**  Natural Language and Computing

**COMP SCI 547**  Computer Systems Modeling Fundamentals

**COMP SCI/E C E 552**  Introduction to Computer Architecture

**COMP SCI/I SY E/M E 558**  Introduction to Computational Geometry

**COMP SCI 559**  Computer Graphics

**COMP SCI 564**  Database Management Systems: Design and Implementation

**COMP SCI/B M I 567**  Medical Image Analysis

**COMP SCI 570**  Introduction to Human-Computer Interaction

**COMP SCI/B M I 576**  Introduction to Bioinformatics

**COMP SCI 577**  Introduction to Algorithms

**COMP SCI/ DS 579**  Virtual Reality

**COMP SCI/I SY E 635**  Tools and Environments for Optimization

**COMP SCI 640**  Introduction to Computer Networks

**COMP SCI 642**  Introduction to Information Security

**COMP SCI 679**  Computer Game Technology

**COMP SCI 639**  Undergraduate Elective Topics in Computing

### RESIDENCE AND QUALITY OF WORK

- 2.000 GPA in all COMP SCI courses and courses counting toward the major
- 2.000 GPA on 15 upper-level credits, taken in residence
- 15 credits in COMP SCI, taken on campus

3 COMP SCI courses numbered 400 through 699 count as Upper Level.

### HONORS IN THE MAJOR

Students may declare Honors in the Computer Sciences Major in consultation with the Computer Sciences undergraduate coordinator(s). To earn Honors in the Major in Computer Sciences, students must satisfy both the requirements for the major (above) and the following additional requirements:

- Earn a minimum 3.300 University GPA
- Earn a minimum 3.500 GPA for all COMP SCI and major courses
- Complete one COMP SCI course numbered 500 through 699, taken for Honors with a grade of B or higher

1. Complete COMP SCI 681 and COMP SCI 682 for a total of 6 credits.

4 Senior Honors Thesis proposal must be approved by both the thesis/project advisor and the department undergraduate coordinator before enrollment in COMP SCI 681. A final thesis or project must be filed with the Department of Computer Sciences before a final grade for COMP SCI 682 can be awarded.

### DISTINCTION IN THE MAJOR

Distinction will be awarded at graduation to majors who are not declared for Honors in the Major, and who meet this criteria:

- Earn a minimum 3.750 GPA or higher in all COMP SCI and major courses, or
- Earn a minimum 3.500 GPA in all COMP SCI and major courses, plus:
  - Complete one COMP SCI courses numbered 500 through 699 for Honors credit and at least a ‘B’ grade
  - Complete COMP SCI 691 - COMP SCI 692 for at least 6 credits

### UNIVERSITY DEGREE REQUIREMENTS

**Total Degree**  To receive a bachelor's degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

**Residency**  Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. 'In residence' means on the UW–Madison campus with an undergraduate degree classification. "In residence" credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.

**Quality of Work**  Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

### LEARNING OUTCOMES

1. Recognize and apply the core principles of Computing (abstractions and algorithms) to solve real-world problems.
2. Describe and apply the theoretical foundations of Computer Science (e.g., complexity analysis) in practical settings.
3. Demonstrate knowledge of key elements of computer systems, e.g., hardware, operating systems, networks.
4. Use fundamental and detailed knowledge, skills, and tools (e.g., specific algorithms, techniques methods, etc.) of computer science and develop the ability to acquire new knowledge, skills, and tools.
5. Design, implement, and evaluate software in multiple programming paradigms and languages.
6. Develop a substantial piece of software, and recognize the challenges of designing and developing software.
7. Exhibit technical (designing, implementing, and testing) and teamwork (communication, collaboration, and professional practice) skills in order to develop solutions as a computer science practitioner.
8. Can solve problems by applying a broad toolbox of knowledge and techniques.
FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN
This Sample Four-Year Plan is a tool to assist students and their advisor(s). Students should use it—along with their DARS report, the Degree Planner, and Course Search & Enroll tools—to make their own four-year plan based on their placement scores, credit for transferred courses and approved examinations, and individual interests. As students become involved in athletics, honors, research, student organizations, study abroad, volunteer experiences, and/or work, they might adjust the order of their courses to accommodate these experiences. Students will likely revise their own four-year plan several times during college.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 200</td>
<td>3 COMP SCI 300</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 304 (optional companion course)</td>
<td>1 COMP SCI/E C E 252</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MATH 221</td>
<td>5 MATH 222</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Communications Part A</td>
<td>3 Ethnic Studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social Science Breadth</td>
<td>3 Foreign Language</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 400</td>
<td>3 COMP SCI/E C E 354</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP SCI/MATH 240</td>
<td>3 Additional Math (MATH 340 recommended)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INTER-LS 210</td>
<td>1 Physical Science Breadth</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Communications Part B</td>
<td>3 Humanities Breadth</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature Breadth</td>
<td>3 Social Science Breadth</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI Theory (COMP SCI 577 recommended)</td>
<td>4 COMP SCI Applications</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Additional Math (STAT 324 recommended)</td>
<td>3 COMP SCI Electives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature Breadth</td>
<td>3 Humanities Breadth</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Biological Science Breadth</td>
<td>3 Social Science Breadth</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social Science Breadth</td>
<td>3 Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI Software/ Hardware</td>
<td>3 COMP SCI Software/ Hardware</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMP SCI Elective</td>
<td>3 Biological Science Breadth</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Science Breadth</td>
<td>3 Elective</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 120

ADVISING AND CAREERS

ADVISING
The undergraduate coordinators in the Department of Computer Sciences are ready to help students with questions about the major, L&S degree requirements and policy, and course selection. Information on academic advising for students interested or declared in the computer sciences major is posted to the Computer Sciences advising page (https://www.cs.wisc.edu/undergraduate/undergraduate-advisors/).

CAREERS
Demand for those with a computer sciences education is exceptionally strong. According to figures from the U.S. Bureau of Labor Statistics, the vast majority of growth in STEM (science, technology, engineering, and math) occupations through 2020 will occur within computing fields.

Computer sciences majors are encouraged to begin working on their career exploration and preparation soon after arriving on campus to explore different career paths, participate in co-ops or summer internships, prepare for the job search and/or graduate school applications, and network with professionals in the field.

Department of Computer Sciences: the department hosts one major career fair (https://www.cs.wisc.edu/connect/job-fair/) per year, in the fall, as well as other opportunities to connect with employers, such as technical talks and information sessions.

SuccessWorks at the College of Letters & Science: SuccessWorks offers two major career fairs per year, assists with resume writing and interviewing skills, and offers individual career advising appointments for L&S students.

Engineering Career Services (ECS): ECS (https://ecs.engr.wisc.edu/public/) offers two major career fairs per year, assists with resume writing and interviewing skills, and hosts workshops on the job search.

L&S CAREER RESOURCES
SuccessWorks at the College of Letters & Science helps students leverage the academic skills learned in their major, certificates, and liberal arts degree; explore and try out different career paths; participate in internships; prepare for the job search and/or graduate school applications; and network with professionals in the field (alumni and employers). In short, SuccessWorks helps students in the College of Letters & Science discover themselves, find opportunities, and develop the skills they need for success after graduation.

SuccessWorks can also assist students in career advising, résumé and cover letter writing, networking opportunities, and interview skills, as well as course offerings for undergraduates to begin their career exploration early in their undergraduate career.

Students should set up their profiles in Handshake (https://careers.ls.wisc.edu/handshake/) to take care of everything they need to explore career events, manage their campus interviews, and apply to jobs and internships from 200,000+ employers around the country.
• SuccessWorks (https://careers.ls.wisc.edu/)
• Set up a career advising appointment (https://careers.ls.wisc.edu/make-an-appointment/)
• INTER-LS 210 L&S Career Development: Taking Initiative (1 credit, targeted to first- and second-year students)—for more information, see Inter-LS 210: Career Development, Taking Initiative (https://careers.ls.wisc.edu/inter-ls-210-career-development-taking-initiative/)
• INTER-LS 215 Communicating About Careers (3 credits, fulfills Com B General Education Requirement)
• Handshake (https://careers.ls.wisc.edu/handshake/)
• Learn how we’re transforming career preparation: L&S Career Initiative (http://ls.wisc.edu/lsci/)

PEOPLE


Associate Professors Akella, Chawla, Liblit, Mutlu, Sankaralingam, Swift

Assistant Professors Albarghouthi, D’Antoni, Gupta, Koutris, Sifakis

Faculty Associates Dahl, Deppeler, Hasti, Legault, Lewis-Williams, Skrentny, Williams

RESOURCES AND SCHOLARSHIPS

Visit Scholarships@UW-Madison (https://scholarships.wisc.edu/Scholarships/) to find UW–Madison scholarships and apply online.

Visit the scholarships page (https://www.cs.wisc.edu/academics/scholarships/) on the Department of Computer Sciences website for a compendium of opportunities available to students studying computer sciences.