APPLIED MATHEMATICS, ENGINEERING, AND PHYSICS, BS AMEP

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatestudytext) section of the *Guide*.

General Education

- Breadth-Humanities/Literature/Arts: 6 credits
- Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth-Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *

COLLEGE OF LETTERS & SCIENCE DEGREE REQUIREMENTS: BACHELOR OF SCIENCE-APPLIED MATHEMATICS, ENGINEERING, AND PHYSICS (BS-AMEP)

Students pursuing a Bachelor of Science—Applied Mathematics, Engineering, and Physics degree in the College of Letters & Science must complete all of the requirements below. The BS—AMEP is a special degree program; it is not considered a major. The BS—AMEP degree is not available to students who intend to earn a degree outside the College of Letters & Science.

BACHELOR OF SCIENCE - AMEP DEGREE REQUIREMENTS

Mathematics Complete the University General Education Requirements for Quantitative Reasoning A (QR-A) and Quantitative Reasoning B (QR-B) coursework.

Language Complete the second unit of a language other than English.

Liberal Arts Complete a minimum of 20 credits in Liberal Arts and and Science (LAS) coursework outside the physical and Requirement mathematical sciences, including:

• at least of 12 credits of Humanities and/or Social Science, including at least 6 credits in Humanities and at least 3 credits of Social Science

- a maximum of 8 credits of Biological Science
- additional eligible coursework to reach 20 total credits.

Courses that carry the Physical Science breadth designation, or are listed (or cross-listed) in the MATH or COMP SCI subjects, are not eligible.

Total Credits Complete at least 125 credits.

UW-Madison Complete both:

Experience • 30 credits in residence, overall, and

• 30 credits in residence after the 90th credit.

Quality of Work • 2.000 in all coursework at UW-Madison

PROGRAM OVERVIEW

A total of at least 125 credits with a minimum GPA of 2.000 is required for this degree plan. Of these credits, at least 83 must be devoted to the Applied Math, Engineering and Physics (AMEP) program requirements; 20 must be devoted to University General Education requirements; and the balance should be taken to meet the Bachelor of Science – AMEP Degree Requirements and Electives.

Code	Title	Credits
University Ge	eneral Education Requirements	20
Bachelor of S	Science - AMEP Degree Requirements	22
AMEP Progra	am Requirements	83
Total Credit	:s	125

AMEP PROGRAM REQUIREMENTS

FOUNDATIONAL MATHEMATICS

Code	Title	Credits
Single Variable	Calculus	
Complete both.		
MATH 221	Calculus and Analytic Geometry 1	5
MATH 222	Calculus and Analytic Geometry 2	4
Multivariable C	alculus	
Complete one of	the following:	4-10
MATH 234	CalculusFunctions of Several Variables	

^{*} The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

MATH 375	Topics in Multi-Variable Calculus and
& MATH 376	Linear Algebra
	and Topics in Multi-Variable
	Calculus and Differential Equations ¹

Total Credits 13-19

FOUNDATIONAL PHYSICS

Code	Title	Credits
First Introductory	/ Course	
Complete one of th	e following:	3-5
PHYSICS 247	A Modern Introduction to Physics	
PHYSICS 207	General Physics	
PHYSICS 201	General Physics	
E M A 202	Dynamics	
M E 240	Dynamics	
Second Introduct	ory Course	
Complete one of th	e following:	5
PHYSICS 248	A Modern Introduction to Physics	
PHYSICS 208	General Physics	
PHYSICS 202	General Physics	
Third Introductor	y Course	
Complete one of th	e following:	3-4
PHYSICS 249	A Modern Introduction to Physics	
PHYSICS 241	Introduction to Modern Physics	
PHYSICS 205	Modern Physics for Engineers	
PHYSICS/	Introduction to Solid State	
E C E 235	Electronics	
Total Credits		11-14

CHEMISTRY

Code	Title	Credits
Complete one of th	e following:	5-9
CHEM 109	Advanced General Chemistry	
CHEM 103 & CHEM 104	General Chemistry I and General Chemistry II	
CHEM 115	Chemical Principles I	
Total Credits		5-9

MATHEMATICS

Complete one of the following:

Complete at least six courses for 18 credits.

Code	Title	Credits		
Core: Linear Algebra				
Complete one of the	following:	3-5		
MATH 320	Linear Algebra and Differential Equations ²			
MATH 340	Elementary Matrix and Linear Algebra			
MATH 341	Linear Algebra			
MATH 375	Topics in Multi-Variable Calculus and Linear Algebra			
Core: Differential Equations				

MATH 320	Linear Algebra and Differential Equations ²
MATH 319	Techniques in Ordinary Differential Equations
MATH 376	Topics in Multi-Variable Calculus and Differential Equations

MATH 376	Topics in Multi-Variable Calculus and Differential Equations	
Core: Applied Analy	rsis	
Complete both.		
MATH 321	Applied Mathematical Analysis	3
MATH 322	Applied Mathematical Analysis	3
Math Electives		
Complete at least thre	ee courses for 9 credits. Select from:	S
MATH 415	Applied Dynamical Systems, Chaos and Modeling	
MATH 421	The Theory of Single Variable Calculus	
MATH/STAT 431	Introduction to the Theory of Probability	
or MATH/ STAT 309	Introduction to Probability and Mathematical Statistics I	
MATH 443	Applied Linear Algebra	
MATH/ COMP SCI 513	Numerical Linear Algebra	
MATH/ COMP SCI 514	Numerical Analysis	
MATH 519	Ordinary Differential Equations	
MATH 521	Analysis I	
MATH 522	Analysis II	
MATH 531	Probability Theory	
MATH 561	Differential Geometry	
MATH 616	Data-Driven Dynamical Systems, Stochastic Modeling and Prediction	
MATH 619	Analysis of Partial Differential Equations	
MATH 623	Complex Analysis	
MATH 627	Introduction to Fourier Analysis	
MATH/ISYE/ OTM/STAT 632	Introduction to Stochastic Processes	

Total Credits 18-25

PHYSICS

Complete at least five courses for 15 credits.

Code	Title	Credits
Core: Physics		
Complete both.		
PHYSICS 311	Mechanics	3
PHYSICS 322	Electromagnetic Fields	3
Physics Elective	s	
Remaining courses/credits from any PHYSICS course numbered 307 and above.		9
Total Credits		15

ENGINEERING

Title Credits Code Complete 21 credits meeting the following criteria: 21

Must be distinct from any courses used to fulfill math and physics requirements above.

Selected from the following:

Biomedical Engineering (B M E) 300-699

Chemical and Biological Engineering (CBE) 300-699

Civil and Environmental Engineering (CIV ENGR)

Electrical and Computer Engineering (E C E) 300-699

Engineering Mechanics and Aerospace Engineering (E MA) 300-699

Engineering Physics (EP) 300-699

Engineering Professional Development (E P D)

Geological Engineering (G L E) 300-699

Industrial and Systems Engineering (ISYE) 300-699

Interdisciplinary Courses (Engineering) (INTEREGR) 300-699

Materials Science and Engineering (MSE) 300-699

Mechanical Engineering (M E) 300-699

Nuclear Engineering (N E) 300-699

LABORATORY EXPERIENCE 3

Code	Title	Credits
Completed with a minimum of 3 credits selected		0-3
from the opt	ions below.	

The following course	applies as 3 credits of lab:
E M A 522	Aerodynamics Lab
The following course	s apply as 2 credits of lab each:
PHYSICS 307	Intermediate Laboratory-Mechanics and Modern Physics
PHYSICS 321	Electric Circuits and Electronics
PHYSICS 325	Optics
PHYSICS 407	Advanced Laboratory
PHYSICS 623	Electronic Aids to Measurement
PHYSICS 625	Applied Optics
The following course	s apply as 1 credit of lab each:
E C E 270	Circuits Laboratory I
EMA/ME 307	Mechanics of Materials Lab

COMPUTATIONAL EXPERIENCE 3

COMP SCI 514

C	ode	Title	Credits
S	elect one of the fo	ollowing:	0-3
	COMP SCI 412	Introduction to Numerical Methods	
	EP/EMA 471	Intermediate Problem Solving for Engineers	
	MATH/ COMP SCI 513	Numerical Linear Algebra	
	MATH/	Numerical Analysis	

RESIDENCE AND QUALITY OF WORK

- Minimum 2.000 GPA in AMEP program courses.⁴
- · Minimum 2.000 GPA and 15 upper-level AMEP program credits, taken in residence.^{4, 5}
- 15 credits in AMEP program courses, taken on the UW-Madison campus.4

HONORS IN THE MAJOR

Honors in the Major is not available in Applied Mathematics, Engineering, and Physics.

FOOTNOTES

- MATH 375 may also be used to fulfill the Linear Algebra requirement below. MATH 376 may be used to fulfill the Differential Equations requirement below.
- MATH 320 fulfills both the Linear Algebra and Differential Equations requirements. AMEP students are encouraged to consider the honors version of the course which is taught by AMEP faculty.
- Courses used to fulfill this requirement need not be distinct from courses used to fulfill Mathematics, Physics, and Engineering requirements in AMEP.
- This includes only those courses which may be used to fulfill Mathematics, Physics, Engineering, Chemistry, Laboratory, and Computational requirements described in the tables above.
- A course numbered 300 or above is considered upper-level in the program.

UNIVERSITY DEGREE REQUIREMENTS

Total Degree To receive a bachelor's degree from UW-Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

Residency

Degree candidates are required to earn a minimum of 30 credits in residence at UW-Madison. "In residence" means on the UW-Madison campus with an undergraduate degree classification. "In residence" credit also includes UW-Madison courses offered in distance or online formats and credits earned in UW-Madison Study Abroad/Study Away programs.

Quality of Work

Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.