A view of the gas in the Magellanic System as it would appear in the night sky.

The Department of Astronomy offers the doctor of philosophy in astronomy. Although a master's degree is offered, students are not admitted for a terminal master's degree.

The department has a long-standing reputation as one of the finest graduate astronomy and astrophysics programs in the United States. The program provides each student with a broad knowledge of modern observational and theoretical astrophysics, while emphasizing the development of independent research skills. Beginning with the first year in the program, graduate students play an active role in the department's research programs and have access to all research facilities. As teaching assistants, they also acquire experience as astronomy educators.

The faculty are engaged in a broad range of observational and theoretical research. Topics of study include dynamical phenomena of massive stars; binary star evolution; dynamics of star clusters and star forming regions; compact objects; the interstellar and intergalactic medium; star formation; plasma astrophysics; computational fluid mechanics; magnetic fields; turbulence; the structure, kinematics, and stellar populations of nearby galaxies; active galactic nuclei; galactic winds and chemical evolution; galaxy clusters; galaxy formation and evolution; the star formation and black hole accretion history of the universe; and the development of innovative astronomical instrumentation. More information is available on the department website.

Research Facilities

Astronomical observations at UW–Madison trace their origin to the 15-inch refractor of Washburn Observatory, founded on the campus in 1878, and still open for public viewing. Wisconsin subsequently pioneered a multi-wavelength approach to astronomical observation. Faculty, research staff, and students are frequent observers on X-ray, ultraviolet, optical, infrared, radio, and submillimeter telescopes around the globe and in space. The department currently participates in the operation of a number of research-class observing facilities and is actively engaged in the development of cutting-edge instrumentation.

The university is a major partner in the WIYN telescope, an advanced technology 3.5m telescope at Kitt Peak, Arizona, optimized for wide-field imaging and spectroscopy, and in the 11m Southern African Large Telescope (SALT), the largest single aperture optical telescope in the Southern Hemisphere. The university is also a partner in the Sloan Digital Sky Survey IV, a massive spectroscopic survey of the distant Universe, nearby galaxies, and stars in the Milky Way.  The department is actively involved in ASKAP and MEERKAT, precursor experiments for an array of radio telescopes one square kilometer in size.

The department has a long history of developing astronomical instrumentation for both ground and space-based facilities. Current efforts center on the development of a near-infrared arm for the Robert Stobie Spectrograph on SALT, and the design and testing of fiber bundle arrays for the Sloan Digital Sky Survey.  UW scientists are also continuing to develop and operate an innovative and highly successful Star Tracker for sounding rocket and balloon-borne experiments. Technical support is provided by in-house electronics and machine shops.

The theory group maintains a variety of facilities to support numerical simulations. The main workhorse is a 72-node, 576-core cluster optimized for tightly coupled problems, such as hydrodynamics and magneto-hydrodynamics. A number of smaller clusters are used for development, analysis and three-dimensional visualization.

Admissions

This master’s program is offered for work leading to the PhD. Students may not apply directly for the master’s, and should instead see the admissions information for the PhD.

Funding

Graduate School Resources

Resources to help you afford graduate study might include assistantships, fellowships, traineeships, and financial aid. Further funding information is available from the Graduate School. Be sure to check with your program for individual policies and restrictions related to funding.

Minimum Graduate School Requirements

Review the Graduate School minimum academic progress and degree requirements, in addition to the program requirements listed below.

Major Requirements

Mode of Instruction

Face to Face Evening/Weekend Online Hybrid Accelerated
Yes No No No No

Mode of Instruction Definitions

Accelerated: Accelerated programs are offered at a fast pace that condenses the time to completion. Students typically take enough credits aimed at completing the program in a year or two.

Evening/Weekend: ​Courses meet on the UW–Madison campus only in evenings and/or on weekends to accommodate typical business schedules.  Students have the advantages of face-to-face courses with the flexibility to keep work and other life commitments.

Face-to-Face: Courses typically meet during weekdays on the UW-Madison Campus.

Hybrid: These programs combine face-to-face and online learning formats.  Contact the program for more specific information.

Online: These programs are offered 100% online.  Some programs may require an on-campus orientation or residency experience, but the courses will be facilitated in an online format.

Curricular Requirements

Minimum Credit Requirement 30 credits
Minimum Residence Credit Requirement 16 credits
Minimum Graduate Coursework Requirement 15 credits must be graduate-level coursework. Refer to the Graduate School: Minimum Graduate Coursework (50%) Requirement policy: https://policy.wisc.edu/library/UW-1244.
Overall Graduate GPA Requirement 3.00 GPA required. Refer to the Graduate School: Grade Point Average (GPA) Requirement policy: https://policy.wisc.edu/library/UW-1203.
Other Grade Requirements A grade of S must be received in ASTRON 990 Research and Thesis before the preliminary examination may be taken.
Assessments and Examinations See PhD for policy information.
Language Requirements No language requirements.

Required Courses 

ASTRON 500 Techniques of Modern Observational Astrophysics3
ASTRON 700 Basic Astrophysics I2
ASTRON 702 Basic Astrophysics II2
ASTRON 715 Stellar Interiors and Evolution2
ASTRON 720 The Interstellar Medium I: Basic Processes2
ASTRON 730 Galaxies2
ASTRON 735 Observational Cosmology2
ASTRON/​PHYSICS  910 Seminar in Astrophysics 10-1
ASTRON 990 Research and Thesis 21-12
Breadth Requirement9
See PhD policy on the Breadth Requirement for details.
Total Credits30
1

Barring course conflicts, students are expected to take this course every semester during their first two years for 1 credit each semester. Once students reach dissertator status, they no longer register for this course.

2

Beyond the other required courses listed, students typically take ASTRON 990 Research and Thesis credits to reach the total minimum credit requirement.

Graduate School Policies

The Graduate School’s Academic Policies and Procedures provide essential information regarding general university policies. Program authority to set degree policies beyond the minimum required by the Graduate School lies with the degree program faculty. Policies set by the academic degree program can be found below.

Major-Specific Policies

Prior Coursework

Graduate Credits Earned at Other Institutions

Refer to the Graduate School: Transfer Credits for Prior Coursework policy.

Undergraduate Credits Earned at Other Institutions or UW-Madison

Up to 7 credits in coursework numbered 700 or above from a UW–Madison undergraduate degree are allowed to count toward the degree.

Credits Earned as a Professional Student at UW-Madison (Law, Medicine, Pharmacy, and Veterinary careers)

Refer to the Graduate School: Transfer Credits for Prior Coursework policy.

Credits Earned as a University Special Student at UW–Madison

With program approval, students are allowed to count no more than 15 credits of coursework numbered 400 or above taken as a UW–Madison University Special student. Coursework earned ten or more years prior to admission to a master's is not allowed to satisfy requirements.

Probation

A grade of C or lower in a core course will result in the student being placed on academic probation. This is removed after the next grade of B or better in a core course. Grades of C or lower in two or more core courses will result in dismissal.

A semester GPA below 3.0 will result in the student being placed on academic probation. This will be removed if the student attains a GPA of 3.0 or above in the subsequent semester.

Advisor / Committee

All students will be assigned a mentoring committee consisting of the student's advisor and two other faculty members. Students are strongly encouraged (but not required) to meet with their mentoring committees twice a year.

Credits Per Term Allowed

15 credits

Time Limits

Refer to the Graduate School: Time Limits policy.

Grievances and Appeals

These resources may be helpful in addressing your concerns:

Students should contact the department chair or program director with questions about grievances. They may also contact the L&S Academic Divisional Associate Deans, the L&S Associate Dean for Teaching and Learning Administration, or the L&S Director of Human Resources.

Other

University fellowships or departmental assistantships are offered, contingent on satisfactory progress. The length of guaranteed student support is four continuous years for those with no prior graduate work. Three continuous years of funding are guaranteed for those with one year or more of prior graduate work. It is almost always the case that students remain fully funded through their thesis defense. 

Professional Development

Graduate School Resources

Take advantage of the Graduate School's professional development resources to build skills, thrive academically, and launch your career. 

Learning Outcomes

  1. Demonstrate a broad understanding of core astrophysical topics including gravitational dynamics; radiative processes; the interstellar medium; the formation, structure, and evolution of stars and galaxies; cosmology; and observational and numerical techniques.
  2. Identify sources and assemble evidence pertaining to questions or challenges in their area of concentration.
  3. Synthesize knowledge from disparate sources and evaluate evidence for and against hypotheses.
  4. Demonstrate academic mastery in their area of concentration, including an understanding of appropriate research methodologies, current theories, recent findings, and their broader implications.
  5. Recognize and apply principles of ethical and professional conduct.

People

Faculty

Professors: Amy Barger (chair), Thomas Beatty, Juliette Becker, Matt Bershady, Elena D'Onghia, Kate Grier, Sebastian Heinz, Alex Lazarian, Bob Mathieu, Michael Maseda, Snezana Stanimirovic, Richard Townsend, Zoe Todd, Christy Tremonti, Susanna Widicus Weaver, Eric Wilcots, Ke Zhang, and Ellen Zweibel

Staff

Department Administrator: Steve Anderson
Graduate Program Manager: Heather Sauer
Research Administrator: Sophia Didier
Travel & Purchasing: Rick Williams
IT: Aaron Teche