Faculty and students examining the characteristics of a soil pit.

The UW–Madison Department of Soil Science is one of the oldest, largest, and most prominent soil science departments in the United States. It is globally renowned for its excellence in soil research and education. The department's mission is to provide instruction, research, and extension leadership in soil chemistry, physics, biology, and pedology to economic and sustainable land use. Programs are designed to improve basic understanding and practical management of soil resources in natural, agricultural, and urban ecosystems, and to serve local, state, national, and global interests. The department implements the Wisconsin Idea to the extended community and provides all generations with an appreciation of soil as a key natural resource and thorough understanding of the scientific basis of the environment and agriculture.

Soil science entails understanding soils and applying the principles of physics, chemistry, mathematics, and biology to the sustainable management of soil and the environment. Soil science deals with the effects of climate change and its interaction with the soil, with scarcity of water resources, and the increase of food production to feed 9 billion people. The link between soils and biodiversity as well as the effects of soils on biofuel production is widely researched in the Department of Soil Science.

The department is committed to integrated programs of instruction, research, extension, and outreach that address societal goals of responsible stewardship of soil and water resources.

The importance of soils in crop production, environmental issues, turf and grounds management, soil conservation, global climate change, carbon sequestration, rural and urban planning, and waste disposal are integrated into the department's course offerings and research programs. Graduate study in soil science provides the basic and applied scientific training needed for teaching, research, and other professional work in the agricultural, earth, and environmental sciences. The department office provides information concerning career placement and available vacancies.

Graduates from the department occupy leading positions in industry, government, education, and research in agriculture, natural resources and environmental science throughout the world. Of the more than 1,000 alumni of the department's graduate program, many are deans, directors, chairs, faculty, and staff at universities in the US and other countries, or in leading positions in government, regulatory agencies, research institutions, agribusinesses, chemical industries, and recreational and conservation organizations.

The number of graduate students enrolled in the program over the past 10 years has averaged 20 per year, with about half pursuing master's degrees and half pursuing doctorates. International students generally comprise about 30% of the total. Department faculty also direct additional graduate students in multidisciplinary research in soils-related programs.

Faculty Research

Research in the department focuses on an improved understanding of the soil, as well as on interactions between soil and the people of Wisconsin. The faculty have extensive and long-term experience and knowledge about the soils of Wisconsin, their genesis, properties and management. The department has an exciting suite of research activities ranging from the molecular level to the global. Research focuses on topical themes like climate change and soil changes to land use effects of biofuel production to DNA fingerprinting of soil life.

Many field-research projects on soil and water problems are conducted in cooperation with state and federal agencies, agribusinesses, municipalities, and private farmers. The department cooperates closely with the Wisconsin Geological and Natural History Survey, Molecular and Environmental Toxicology Center, and the USDA Natural Resource Conservation Service in conducting soil surveys and addressing problems of groundwater shortages and contamination. Relationships between soils and forests are studied at tree nurseries and in state, private, and commercial forests throughout the state in cooperation with the Wisconsin Department of Natural Resources and the pulp and paper industry.

Through a long commitment of our staff to international agriculture, the department has assisted in the creation of agricultural colleges in several developing countries and has attracted outstanding international graduate students. Current research involvement includes Brazil, Chile, China, Trinidad-Tobago, Spain, Australia, Argentina, and Antarctica.

Many department faculty have been recognized nationally and globally for their contributions to soil science. Three of only four soil scientists appointed to the National Academy of Sciences are from the UW–Madison Department of Soil Science. Several faculty members have received local and national academic, professional-society, trade-association, and industrial prizes and awards for teaching, research, and extension education, and serve on important state, national, and international committees. Many faculty members have been recognized for their contributions by election to honorary fellowship in the Soil Science Society of America, the American Society of Agronomy, and allied professional societies.

Our faculty are heavily involved in cooperative interdisciplinary research undertakings with scientists and organizations within and beyond the university, such as UW–Madison's Gaylord Nelson Institute for Environmental Studies, Molecular and Environmental Toxicology Center, Environmental Chemistry and Technology Program, and other science departments, state agencies, environmental consulting and service companies, agribusinesses, and trade organizations.

RESEARCH FACILITIES

Research in the department can be conducted in the field, in the laboratory, and behind the desktop, but is commonly conducted in a combination. The department is equipped with all necessary laboratory, computing, and field facilities for graduate training and research. State-of-the-art scientific instrumentation includes soil moisture tension apparatus; flame-emission and atomic-absorption spectrophotometers and gamma-ray spectrometers; neutron activation analysis equipment; an inductively coupled plasma (ICP)-emission spectrometer and an ICP-mass spectrometer; thin-layer, high-performance liquid, gas, and ion chromatographs; low-mass isotope ratio mass spectrometer; micro-respirometers; micro-titer-plate counters; infrared and ultraviolet spectrophotometers; phase-contrast, polarizing and epifluorescence microscopy and photomicrography equipment; eddy correlation systems for heat, moisture, and CO2 fluxes; ground-penetrating radar; high-resolution digital imaging; dynamic light scattering and particle electrophoresis equipment; flow field flow fractionation; and accelerated solvent extractor. Field equipment includes a truck-mounted hydraulic soil probe with well-drilling capabilities; a plot-field harvest combine; various production field equipment (planters, tillage equipment, rainfall simulator); differential-global position system; and particle counter.

Excellent data-collection, data logging, computing, and networking facilities are available for basic research and graduate training. In addition to computing facilities maintained by individual researchers for their students, the department makes available to its graduate students a computer graphics facility for the production of sophisticated graphic output.

Specialized facilities are available for research in molecular biology, modern environmental microbiology, in vitro toxicology and bioassays, and contaminated-site remediation. Soils graduate students and faculty have shared access to major advanced physicochemical, x-ray, and electron microscopy analytical equipment through the Materials Science Center, National Magnetic Resonance Facility at Madison, National Synchrotron Light Source at Brookhaven National Laboratories, and other UW–Madison science and engineering departments. Facilities, vehicles, machinery, and instrumentation are available for conducting field experiments at ten strategically located UW Agricultural Research Stations and the O.J. Noer Turfgrass Research and Education Facility. Fieldwork for agricultural production and environmental protection is supported by daily information from the CALS agricultural weather-station network as well as soils, crops, land-use, and natural resources analysis using land information systems and geographic information systems.

Please consult the table below for key information about this degree program’s admissions requirements. The program may have more detailed admissions requirements, which can be found below the table or on the program’s website.

Graduate admissions is a two-step process between academic programs and the Graduate School. Applicants must meet the minimum requirements of the Graduate School as well as the program(s). Once you have researched the graduate program(s) you are interested in, apply online.

Fall Deadline January 5*
Spring Deadline October 15**
Summer Deadline January 5*
GRE (Graduate Record Examinations) Not required.
English Proficiency Test Every applicant whose native language is not English or whose undergraduate instruction was not in English must provide an English proficiency test score and meet the Graduate School minimum requirements (https://grad.wisc.edu/apply/requirements/#english-proficiency).
Other Test(s) (e.g., GMAT, MCAT) n/a
Letters of Recommendation Required 3
*

To ensure consideration for fall semester, students should apply by January 5. Rolling admission may also occur if new funding becomes available.

**

To ensure consideration for spring semester, students should apply by October 15. Rolling admission may also occur if new funding becomes available.

A foundation in the basic sciences is essential for graduate study in soil science. The program requires all students to have successfully completed the pre-requisite or equivalent coursework listed below. Admission with deficiencies is possible but is likely to delay completion of graduate studies.

Pre-requisite Coursework

The following courses are generally completed in an undergraduate program; however, if these requirements have not been met, they will need to be satisfied during the M.S. program.

MATH 221 Calculus and Analytic Geometry 14-5
or MATH 222 Calculus and Analytic Geometry 2
STAT 301 Introduction to Statistical Methods3
CHEM 109
CHEM 327
Advanced General Chemistry
and Fundamentals of Analytical Science
9
or CHEM 103/104 General Chemistry I
PHYSICS 103 General Physics4
BIOLOGY/​BOTANY/​ZOOLOGY  151 Introductory Biology3
or BOTANY/​BIOLOGY/​ZOOLOGY  152 Introductory Biology
or BOTANY 500 Plant Physiology
or BOTANY/​F&W ECOL/​ZOOLOGY  460 General Ecology
or BIOCHEM 501 Introduction to Biochemistry
or BIOCHEM 507 General Biochemistry I

Application Materials

The following materials must be submitted when applying to the program: an online application, official transcripts, and three references. TOEFL scores are required for applicants whose native language is not English. Because graduate requirements presuppose extensive science coursework, continuing undergraduate students are encouraged to select undergraduate courses carefully if they are considering advanced degrees in soil science.

Graduate School Resources

Resources to help you afford graduate study might include assistantships, fellowships, traineeships, and financial aid. Further funding information is available from the Graduate School. Be sure to check with your program for individual policies and restrictions related to funding.

Program Resources

Financial support is usually available to qualified students in the form of research assistantships, mostly funded from research grants; final decision for granting a research assistantship rests with the professor(s) supervising the research. Any assistantship for at least one-third time qualifies a student for remission of tuition (though students may be responsible for other administrative fees). The department does not offer teaching assistantships. A number of Graduate School fellowships are available to new students with outstanding records. The deadline for application for these competitive fellowships is early January of each year. The department selects the most qualified applicants and forwards their dossiers to a campus-wide selection committee. Support for graduate assistantships is available through two Wisconsin Distinguished Fellowships (the W.R. Kussow/Wisconsin Turfgrass Association and the Leo M. Walsh/Wisconsin Fertilizer and Chemical Association), the C.B. Tanner Agricultural Physics Award Fund, and the Charles and Alice Ream Soil and Water Protection Research Fund. In addition, there are two awards given annually to outstanding incoming graduate students, the O.N. Allen Graduate Fellowship for Agriculture and the Kelling Soil Fertility Award.

Minimum Graduate School Requirements

Review the Graduate School minimum academic progress and degree requirements, in addition to the program requirements listed below.

Major Requirements

MODE OF INSTRUCTION

Face to Face Evening/Weekend Online Hybrid Accelerated
Yes No No No No

Mode of Instruction Definitions

Accelerated: Accelerated programs are offered at a fast pace that condenses the time to completion. Students typically take enough credits aimed at completing the program in a year or two.

Evening/Weekend: ​Courses meet on the UW–Madison campus only in evenings and/or on weekends to accommodate typical business schedules.  Students have the advantages of face-to-face courses with the flexibility to keep work and other life commitments.

Face-to-Face: Courses typically meet during weekdays on the UW-Madison Campus.

Hybrid: These programs combine face-to-face and online learning formats.  Contact the program for more specific information.

Online: These programs are offered 100% online.  Some programs may require an on-campus orientation or residency experience, but the courses will be facilitated in an online format.

CURRICULAR REQUIREMENTS

Minimum Credit Requirement 30 credits
Minimum Residence Credit Requirement 16 credits
Minimum Graduate Coursework Requirement Half of degree coursework (15 credits out of 30 total credits) must be completed graduate-level coursework; courses with the Graduate Level Coursework attribute are identified and searchable in the university's Course Guide (https://registrar.wisc.edu/course-guide/).
Overall Graduate GPA Requirement 3.00 GPA required.
Other Grade Requirements Required courses in soil science must be completed with a grade of B or better (BC and C may not be offset by AB and A). For all other courses, the requirement is an average record of B or better in all work taken as a graduate student.
Assessments and Examinations Students are expected to present a written research plan to their committee no later than the end of the third semester of M.S. graduate work.

Candidates must present an open seminar on their M.S. thesis research, and pass a comprehensive examination (either oral, or an oral–written combination if requested by the candidate) on the graduate work offered in support of their candidacy.

Deposit of the master’s thesis is required.
Language Requirements No language requirements.

Required COURSES

SOIL SCI 301 General Soil Science4
SOIL SCI 325 Soils and Landscapes3
SOIL SCI 728 Graduate Seminar 11
At least one course from 3 of the following 5 subject areas:9
Soil Physics
Physical Principles of Soil and Water Management
Environmental Biophysics
Soil Physics
Soil Chemistry
Soils and Environmental Chemistry
Soil Chemistry
Mineral Nutrition of Plants
Soil Biology
Soil Biology
Soil Microbiology and Biochemistry
Microbiology of Waterborne Pathogens and Indicator Organisms
Soil Fertility
Plant Nutrition Management
Spatial Analysis
Applications of Geographic Information Systems in Natural Resources
An Introduction to Geographic Information Systems
SOIL SCI 990 Research 21-12
M.S. candidates must enroll in a minimum of 7 credits non-research soils and/or non-soils courses at the 500 level or higher. This should include 1 credit of SOIL SCI 728 (presentation semester).7
1

All M.S. candidates must present at least one SOIL SCI 728 for a letter grade >/= B or equivalent during M.S. program. Each candidate must enroll in SOIL SCI 728 every fall and spring semester; exceptions require the approval of the department chair.

2

 M.S. candidates must enroll in a minimum of 1 credit of SOIL SCI 990 every semester.

Graduate School Policies

The Graduate School’s Academic Policies and Procedures provide essential information regarding general university policies. Program authority to set degree policies beyond the minimum required by the Graduate School lies with the degree program faculty. Policies set by the academic degree program can be found below.

Major-Specific Policies

Prior Coursework

Graduate Work from Other Institutions

With program approval, students are allowed to count no more than 12 credits of graduate coursework taken during graduate study at other institutions. Coursework earned five or more years prior to admission to a master’s degree is not allowed to satisfy requirements. Students may petition the department for an appeal of the five year limit on a case-by-case basis.

UW–Madison Undergraduate

With program approval, students are allowed to count no more than 7 credits of graduate coursework numbered 300 or above from a UW–Madison undergraduate degree. The coursework may also count toward the 50% graduate coursework requirement if the courses are numbered 700 or above. Coursework earned five or more years prior to admission to a master’s degree is not allowed to satisfy requirements. Students may petition the department for an appeal of the five year limit on a case-by-case basis.

UW–Madison University Special

With program approval, students are allowed to count no more than 15 credits of coursework numbered 300 or above taken as a UW–Madison University Special student. The coursework may also count toward the 50% graduate coursework requirement if the courses are numbered 700 or above. Coursework earned five or more years prior to admission to a master’s degree is not allowed to satisfy requirements. Students may petition the department for an appeal of the five year limit on a case-by-case basis.

ProbatioN

The Graduate School regularly reviews the record of any student who earned grades of BC, C, D, F, or Incomplete in a graduate course (300 or above), or grade of U in research credits. This review could result in academic probation with a hold on future enrollment or in being suspended from the Graduate School.

ADVISOR / COMMITTEE

The master’s examination committee consists of at least three faculty members of defensible breadth, a minimum of two drawn from the soil science faculty. Defensible breadth shall be subject to certification committee approval. The third member of the committee must have a degree equivalent to that pursued by the student and be approved by the certification committee.

A proposed program for a M.S. candidate satisfying the minimum course requirements must be approved by the certification committee by the end of the first semester of M.S. graduate work. It is the responsibility of the student and the major professor to complete the departmental M.S. certification forms, arrange to be certified by the certification committee, and arrange for approval of revisions in the initial program if this becomes necessary.

CREDITS PER TERM ALLOWED

15 credits

Time Constraints

Students enrolled full time are expected to complete their degree requirements within two to three years.

Master's degree students who have been absent for five or more consecutive years lose all credits that they have earned before their absence. Individual programs may count the coursework students completed prior to their absence for meeting program requirements; that coursework may not count toward Graduate School credit requirements. Students may petition the department for an appeal of the five year limit on a case-by-case basis.

grievances and appeals

These resources may be helpful in addressing your concerns:

College of Agricultural and Life Sciences: Grievance Policy
 

In the College of Agricultural and Life Sciences (CALS), any student who feels unfairly treated by a member of the CALS faculty or staff has the right to complain about the treatment and to receive a prompt hearing. Some complaints may arise from misunderstandings or communication breakdowns and be easily resolved; others may require formal action. Complaints may concern any matter of perceived unfairness.

To ensure a prompt and fair hearing of any complaint, and to protect the rights of both the person complaining and the person at whom the complaint is directed, the following procedures are used in the College of Agricultural and Life Sciences. Any student, undergraduate or graduate, may use these procedures, except employees whose complaints are covered under other campus policies.

  1. The student should first talk with the person at whom the complaint is directed. Most issues can be settled at this level. Others may be resolved by established departmental procedures.
  2. If the student is unsatisfied, and the complaint involves any unit outside CALS, the student should seek the advice of the dean or director of that unit to determine how to proceed.
    1. If the complaint involves an academic department in CALS the student should proceed in accordance with item 3 below.
    2. If the grievance involves a unit in CALS that is not an academic department, the student should proceed in accordance with item 4 below.
  3. The student should contact the department’s grievance advisor within 120 calendar days of the alleged unfair treatment. The departmental administrator can provide this person’s name. The grievance advisor will attempt to resolve the problem informally within 10 working days of receiving the complaint, in discussions with the student and the person at whom the complaint is directed.
    1. If informal mediation fails, the student can submit the grievance in writing to the grievance advisor within 10 working days of the date the student is informed of the failure of the mediation attempt by the grievance advisor. The grievance advisor will provide a copy to the person at whom the grievance is directed.
    2. The grievance advisor will refer the complaint to a department committee that will obtain a written response from the person at whom the complaint is directed, providing a copy to the student. Either party may request a hearing before the committee. The grievance advisor will provide both parties a written decision within 20 working days from the date of receipt of the written complaint.
    3. If the grievance involves the department chairperson, the grievance advisor or a member of the grievance committee, these persons may not participate in the review.
    4. If not satisfied with departmental action, either party has 10 working days from the date of notification of the departmental committee action to file a written appeal to the CALS Equity and Diversity Committee. A subcommittee of this committee will make a preliminary judgement as to whether the case merits further investigation and review. If the subcommittee unanimously determines that the case does not merit further investigation and review, its decision is final. If one or more members of the subcommittee determine that the case does merit further investigation and review, the subcommittee will investigate and seek to resolve the dispute through mediation. If this mediation attempt fails, the subcommittee will bring the case to the full committee. The committee may seek additional information from the parties or hold a hearing. The committee will present a written recommendation to the dean who will provide a final decision within 20 working days of receipt of the committee recommendation.
  4. If the alleged unfair treatment occurs in a CALS unit that is not an academic department, the student should, within 120 calendar days of the alleged incident, take his/her grievance directly to the Associate Dean of Academic Affairs. The dean will attempt to resolve the problem informally within 10 working days of receiving the complaint. If this mediation attempt does not succeed the student may file a written complaint with the dean who will refer it to the CALS Equity and Diversity Committee. The committee will seek a written response from the person at whom the complaint is directed, subsequently following other steps delineated in item 3d above.

Other

Financial support is available to qualified M.S. and Ph.D. students in the form of research assistantships. Most assistantships are funded through research grants, and the final decision rests with the professor(s) supervising the research. A research assistantship for at least one-third time qualifies a student for remission of all tuition. The department offers a limited number of teaching assistantships. Graduate School fellowships are also available.

Graduate School Resources

Take advantage of the Graduate School's professional development resources to build skills, thrive academically, and launch your career. 

Program Resources

UW–Madison offers a wealth of resources intended to enrich your graduate studies and enhance your professional skills. Starting your very first year on campus, it is expected that you will take full advantage of the career and professional development resources that best fit your needs and support your goals. Since our alumni thrive not only in academia but also in industry, corporate, government, and non-profit arenas, we strive to be in-tune, holistic, and innovative in our approach to meeting the diverse professional development needs of our students. By actively participating in these professional development opportunities, you will build the skills needed to succeed academically at UW–Madison and to thrive professionally in your chosen career.

  1. Articulates, critiques, and elaborates theories, research methods, and approaches in soil science.
  2. Identifies sources and assembles evidence addressing questions or challenges in soil science.
  3. Understands the field of soil science in historical, social, and global contexts.
  4. Selects and/or utilizes the appropriate methodologies and practices for soil science research.
  5. Evaluates or synthesizes information addressing research questions.
  6. Communicates clearly in oral and written forms.
  7. Recognizes and applies principles of ethical and professional conduct.

FACULTY

Associate Professor Francisco Arriaga

Applied Soil Physics, Soil and Water Management and Conservation: Conservation agriculture systems; development of conservation tillage practices that enhance soil quality, soil hydraulic properties, and plant water use through the adoption of cover crops and non-inversion tillage for traditional cropping systems.

Professor Nicholas Balster

Soil Ecology, Plant Physiological Ecology, and Education: Energy and material cycling in natural and anthropogenic soils including forests, grasslands, and urban ecosystems; stable isotope ecology; environmental education; nutrition management of nursery soils; tree physiology, production and response; ecosystem response to global change; urban ecosystem processes; invasive plant ecology; biodiversity.

Professor Phillip Barak

Soil Chemistry and Plant Nutrition: Nutrient cycling; nutrient recovery from wastewater; molecular visualization of soil minerals and molecules; soil acidification.

Assistant Professor Zachary Freedman

Soil microbiology, ecology and sustainability: Effects of environmental change on biogeochemical cycles; community ecology and trophic dynamics; forest soil ecology; soil organic matter dynamics; sustainable agroecosystems; bio-based product crop production on marginal lands.  

Professor Alfred Hartemink

Pedology, Digital Soil Mapping: Pedology; soil carbon; digital soil mapping; tropical soils; history and philosophy of soil science; pedology, soil survey, and soil information systems.

Assistant Professor Jingyi Huang

Soil Physics, Proximal and Remote Sensing, Soil Monitoring and Management, Digital Soil Mapping: Application of proximal and remote sensing technologies for understanding the movement of water, heat, gas, and solutes in soils across different spatial and temporal scales; application of physical and empirical models for monitoring, mapping, and managing soil changes due to natural processes and human activities.

Assistant Professor Inna Popova

Environmental soil chemistry; understanding and mitigating the response of soil systems to the increased pressure of organic contaminants; application of biopesticides; development of novel separation and analyses methods for contaminants in environmental matrices.

Professor Matthew Ruark

Soil Fertility and Nutrient Management: Soil fertility and management of grain biofuel, and vegetable crops; cover crop management; agricultural production and water quality; sustainability of dairy cropping systems; soil organic matter management.

Professor Douglas Soldat

Turfgrass and Urban Soils—Turfgrass, urban soils, nutrient management, water resources, soil testing, landscape irrigation; soil contamination.

Assistant Professor Thea Whitman

Soil Ecology, Microbiology, and Biogeochemistry: Soil microbial ecology; organic matter decomposition and carbon stabilization; global environmental change; stable isotopes; linking functional significance of microbial communities with ecosystem processes; fire effects on soil carbon and microbes; management and policy.

Assistant Professor Xia Zhu-Barker

Soil Biogeochemistry, Land Management, and Environmental Sustainability:  Nitrogen and carbon biogeochemical cycles; greenhouse gas and air pollutant emissions; nitrate leaching and runoff; innovative manure and nutrient utilization; composting; climate change mitigation and adaptation; ecosystem services and carbon markets; dairy environmental sustainability; novel methods in isotopic techniques; mechanistic exploration of soil-plant-microbe interactions; process-based modelling. The specific research topics include:

  • Microbial and abiotic processes involved in the production and consumption of nitrogen and carbon gases (N2O, NOX, NH3, CO2, CH4)
  • Land management practices (e.g., compost, fertilizer, cover crops, irrigation, and tillage) that change soil health, nitrogen use efficiency, crop productivity, nitrogen losses, carbon turnover.
  • Process oriented modelling of carbon/nitrogen turnover in agricultural ecosystems.
  • Environmental changes on the sustainability and resilience of agricultural ecosystems especially dairy production systems.