As a computer engineering major, you can learn how to design and manufacture computer hardware using the latest semiconductor chip technologies, which form the foundation of everything from automobiles to household appliances to defense systems. In addition, you can learn how to develop, analyze and research systems that process, store and convey digital information. Computer engineering majors explore cutting-edge systems, including wearable technology, mobile devices, personal computers, servers used in the cloud, and embedded systems. You can even focus on the mathematics, tools and practices associated with machine learning and data science in engineering with our new Machine Learning and Data Science named degree option. Become a Badger, and let your curiosity set your path for learning.

Electrical Engineering and Computer Engineering Program Educational Objectives

Our graduates should be engaged in activities such as:

  1. Employment in industry, government, academia, or non-profit using their degree knowledge or skills for professional functions such as teaching, research and development, quality control, technical marketing, intellectual property management, or sales. Graduates may eventually reach a leadership position supervising others.
  2. Continuing education through self-study or short courses and workshops through their employer, local or online educational institutions, or attendance at professional events such as conferences.
  3. Taking a principal role in starting a new business or product line.
  4. Pursuing a postgraduate degree.

Admission to the College as a Freshman

Students applying to UW–Madison need to indicate an engineering major as their first choice in order to be considered for direct admission to the College of Engineering. Direct admission to a major means students will start in the program of their choice in the College of Engineering and will need to meet progression requirements at the end of the first year to guarantee advancement in that program.

Cross-Campus Transfer to Engineering

UW–Madison students in other schools and colleges on campus must meet minimum admission requirements for admission consideration to engineering degree granting classifications. Cross-campus admission is competitive and selective, and the grade point average expectations may increase as demand trends change. The student’s overall academic record at UW–Madison is also considered. Students apply to their intended engineering program by submitting the online application by stated deadlines for spring and fall. The College of Engineering offers an online information tutorial and drop-in advising for students to learn about the cross-campus transfer process.

Off-Campus Transfer to Engineering

With careful planning, students at other accredited institutions can transfer coursework that will apply toward engineering degree requirements at UW–Madison. Off-campus transfer applicants are considered for direct admission to the College of Engineering by applying to the Office of Admissions with an engineering major listed as their first choice. Those who are admitted to their intended engineering program must meet progression requirements at the point of transfer or within their first two semesters at UW–Madison to guarantee advancement in that program. A minimum of 30 credits in residence in the College of Engineering is required after transferring, and all students must meet all requirements for their major in the college. Transfer admission to the College of Engineering is competitive and selective, and students who have exceeded the 80 credit limit at the time of application are not eligible to apply.

The College of Engineering has dual degree programs with select four-year UW System campuses. Eligible dual degree applicants are not subject to the 80 credit limit.

Off-campus transfer students are encouraged to discuss their interests, academic background, and admission options with the Transfer Coordinator in the College of Engineering: ugtransfer@engr.wisc.edu or 608-262-2473.

Second Bachelor's Degree

The College of Engineering does not accept second undergraduate degree applications. Second degree students might explore the Biological Systems Engineering program at UW–Madison, an undergraduate engineering degree elsewhere, or a graduate program in the College of Engineering.

University General Education Requirements

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements section of the Guide.

General Education
  • Breadth—Humanities/Literature/Arts: 6 credits
  • Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
  • Breadth—Social Studies: 3 credits
  • Communication Part A & Part B *
  • Ethnic Studies *
  • Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

Summary of Requirements

The following curriculum applies to students who were admitted to the computer engineering degree program (classification changed to CMPE) in fall 2017 or later.

Computer Engineering Core34
Computer Engineering Advanced Electives16
Professional Electives9
Communication Skills6
Liberal Studies15
Free Elective1
Total Credits120-121


MATH 221 Calculus and Analytic Geometry 15
or MATH 217 Calculus with Algebra and Trigonometry II
or MATH 275
MATH 222 Calculus and Analytic Geometry 24
or MATH 276
MATH 234 Calculus--Functions of Several Variables 14
MATH/​COMP SCI  240 Introduction to Discrete Mathematics3
or MATH/​COMP SCI/​STAT  475 Introduction to Combinatorics
Probability/Statistics Elective (select one)3
Introduction to Theory and Methods of Mathematical Statistics I
Introduction to the Theory of Probability
Introduction to Random Signal Analysis and Statistics
Total Credits19

 MATH 375 and MATH 376 taken in sequence will fulfill the requirement for MATH 234.


COMP SCI 300 Programming II3
COMP SCI 400 Programming III3
PHYSICS 201 General Physics 15
or PHYSICS 207 General Physics
or PHYSICS 247 A Modern Introduction to Physics
PHYSICS 202 General Physics5
or PHYSICS 208 General Physics
or PHYSICS 248 A Modern Introduction to Physics
Select one of the following:4-5
Advanced General Chemistry
General Chemistry I
General Chemistry II
Total Credits20-21

 Students may also fulfill this requirement by taking E M A 201 Statics and E M A 202 Dynamics or E M A 201 Statics and M E 240 Dynamics.

Computer Engineering Core

E C E 203 Signals, Information, and Computation3
E C E 210 Introductory Experience in Electrical Engineering2
E C E 219 Analytical Methods for Electromagnetics Engineering2
E C E 220 Electrodynamics I3
E C E 230 Circuit Analysis4
E C E/​COMP SCI  252 Introduction to Computer Engineering3
E C E 270 Circuits Laboratory I1
E C E 315 Introductory Microprocessor Laboratory1
E C E 340 Electronic Circuits I3
E C E/​COMP SCI  352 Digital System Fundamentals3
E C E 353 Introduction to Microprocessor Systems3
E C E/​COMP SCI  354 Machine Organization and Programming3
E C E 551 Digital System Design and Synthesis3
Total Credits34

Computer Engineering Advanced Electives

Electronic Circuits Elective3
Electronic Circuits II
Applied Communications Systems
Analog MOS Integrated Circuit Design
Introduction to Microelectromechanical Systems
Integrated Circuit Design
Digital Circuits and Components
Systems Software Elective3-4
Software Engineering
Introduction to Programming Languages and Compilers
Introduction to Operating Systems
Database Management Systems: Design and Implementation
Capstone Design4
Embedded Microprocessor System Design
Mobile Computing Laboratory 1
Digital Engineering Laboratory
CMPE Elective I3
Communication Networks
Introduction to Computer Architecture
Testing and Testable Design of Digital Systems
Design Automation of Digital Systems
CMPE Elective II3
Total Credits16-17

 E C E 454 Mobile Computing Laboratory and COMP SCI 407 Foundations of Mobile Systems and Applications cannot both be taken for degree credit.

Professional Electives

Professional Electives9
Courses to be taken in an area of professional interest. The following courses are acceptable as professional electives if the courses are not used to meet any other degree requirements.
Cooperative Education Program (One co-op credit can count towards professional electives.)
Data Science & Engineering
Introduction to Solid State Electronics
Electrodynamics II
Signals and Systems
Introduction to Random Signal Analysis and Statistics
Feedback Control Systems
State Space Systems Analysis
Microelectronic Devices
Electronic Circuits II (may be used if not already used as an Electronic Circuits Advanced Elective)
Electromechanical Energy Conversion
Electric Power Processing for Alternative Energy Systems
E C E courses numbered 399 and higher
COMP SCI courses numbered 400 and higher
Techniques in Ordinary Differential Equations
Linear Algebra and Differential Equations 1
Applied Mathematical Analysis
Applied Mathematical Analysis
Elementary Matrix and Linear Algebra 1
Linear Algebra
MATH courses numbered 400 and higher
STAT courses numbered 400 and higher
Any biological sciences course that is designated as intermediate or advanced level
Any physical science course that is designated as intermediate or advanced level
Any natural science course that is designated as advanced level, except that math, computer sciences, and statistics courses must follow the above criteria
Engineering courses numbered 300 and higher that are not E C E or cross-listed with E C E
Up to six credits of Professional Electives can be taken from School of Business classes numbered 300 and higher.
Special Topics (Wearable Technologies)
Current Topics in Dance: Workshop (Making Digital Lighting Controls)

 Students may only earn degree credit for MATH 320 Linear Algebra and Differential Equations or MATH 340 Elementary Matrix and Linear Algebra, not both.

Communication Skills

ENGL 100 Introduction to College Composition3
or LSC 100 Science and Storytelling
or COM ARTS 100 Introduction to Speech Composition
or COM ARTS 181 Elements of Speech-Honors Course
or ESL 118 Academic Writing II
INTEREGR 397 Engineering Communication3
Total Credits6

Liberal Studies Electives 

College of Engineering Liberal Studies Requirements
Complete requirements 115
Total Credits15

All liberal studies credits must be identified with the letter H, S, L, or Z. Language courses are acceptable without the letter and are considered humanities. Note: See an E C E advisor and/or the EE Curriculum Guide for additional information.

Honors in Undergraduate Research Program

Qualified undergraduates may earn an Honors in Research designation on their transcript and diploma by completing 8 credits of undergraduate honors research, including a senior thesis. Further information is available in the department office.

Named Option

Total Degree Credits: 120

University Degree Requirements

Total Degree To receive a bachelor's degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.
Residency Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. “In residence” credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.
Quality of Work Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.
  1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  3. an ability to communicate effectively with a range of audiences
  4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.


First Year
MATH 2215MATH 2224
or Communications A
E C E 2102
CHEM 103, 104, or 1094-5Communications A or3
Liberal Studies Elective3
 15-16 14
Second Year
E C E 2033MATH/​COMP SCI  2403
E C E/​COMP SCI  3523E C E 2192
MATH 2344E C E 2304
PHYSICS 2025E C E 2701
 COMP SCI 3003
 Liberal Studies Elective3
 15 16
Third Year
E C E 3533E C E 3151
E C E 2203E C E 5513
E C E 3403Circuits Elective3
E C E/​COMP SCI  3543Probability and Statistics Elective3
 Liberal Studies Elective3
 15 16
Fourth Year
E C E 453, 454, or 5544COMP SCI 536, 537, or 5643-4
Computer Engineering Elective3Computer Engineering Elective3
Professional Elective3Professional Elective3
Liberal Studies Elective3Liberal Studies Elective3
Professional Elective3Free Elective1
 16 13-14
Total Credits 120-122


Each College of Engineering program has academic advisors dedicated to serving its students. Program advisors can help current College of Engineering students with questions about accessing courses, navigating degree requirements, resolving academic issues and more. Students can find their assigned advisor on the homepage of their student center. 


Engineering Career Services (ECS) assists students in identifying pre-professional work-based learning experiences such as co-ops and summer internships, considering and applying to graduate or professional school, and finding full-time professional employment during their graduation year.

ECS offers two major career fairs per year, assists with resume writing and interviewing skills, hosts workshops on the job search, and meets one-on-one with students to discuss offer negotiations.

Students are encouraged to utilize the ECS office early in their academic careers. For comprehensive information on ECS programs and workshops, see the ECS website or call 608-262-3471.


Susan Hagness (Chair)
Nader Behdad
Daniel Botez
Azadeh Davoodi (Associate Chair for Undergraduate Studies)
John A. Gubner (Associate Chair for Operations)
Yu Hen Hu
Hongrui Jiang (Associate Chair for Graduate Studies)
Irena Knezevic
Bernard Lesieutre
Mikko Lipasti
Zhenqiang Ma
Luke J. Mawst
Robert Nowak
Parameswaran Ramanathan
Bulent Sarlioglu
William A. Sethares
Daniel van der Weide
Giri Venkataramanan
Amy E. Wendt
Zongfu Yu

Associate Professors

Kassem Fawaz (Associate Chair for Research)
Mikhail Kats
Younghyun Kim
Daniel Ludois
Paul H. Milenkovic
Umit Ogras
Dimitris Papailiopoulos
Line Roald
Andreas Velten

Assistant Professors

Joseph Andrews
Jennifer Choy
Grigoris Chrysos
Jeremy Coulson
Dominic Gross
Chirag Gupta
Tsung-Wei Huang
Robert Jacobberger
Akhilesh Jaiswal
Bhuvana Krishnaswamy
Kangwook Lee
Chu Ma
Pedro Morgado
Shubhra Pasayat
Jinia Roy
Joshua San Miguel
Manish Singh
Hihan Sun
Eric Tervo
Ramya Korlakai Vinayak
Ying Wang
Feng Ye
Lei Zhou

Teaching Faculty

Mark C. Allie
Eric Hoffman
Joe Krachey
Srdjan Milicic

Teaching Professor

Eduardo Arvelo
Setareh Behroozi
Steven Fredette
Nathan Strachen

See also Electrical and Computer Engineering Faculty Directory.


Accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the commission's General Criteria and Program Criteria for Electrical, Computer, Communication, Telecommunication(s), and Similarly Named Engineering Programs.

Note: Undergraduate Program Educational Objectives and Student Outcomes are made publicly available at the Departmental website. (In this Guide, the program's Student Outcomes are designated by our campus as "Learning Outcomes.")