astronomy

Astronomy, the oldest of the sciences, for the last several decades has been one of the most exciting fields of modern scientific research. New discoveries concerning the solar system, stars, galaxies, and the origin of the universe continue to be made by both ground and space telescopes. To understand and pursue modern astronomy, one must have a solid background in physics and mathematics as well as in astronomy.

The astronomy–physics major, administered by the Department of Astronomy, provides undergraduates the opportunity to appreciate our current understanding of the astronomical universe, while developing the necessary physics and math background. Students who intend to continue astronomy in a graduate program are strongly encouraged to do a Senior Thesis ASTRON 691/ASTRON 692 or Senior Honors Thesis ASTRON 681/ASTRON 682. The experiences of actual research and of writing a major paper develop both technical and writing skills.

Students are encouraged to declare their major as early as possible. Before declaring the major, students must complete the first two of the three classes in the Introductory PHYSICS sequence.

University General Education Requirements

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements section of the Guide.

General Education
  • Breadth—Humanities/Literature/Arts: 6 credits
  • Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
  • Breadth—Social Studies: 3 credits
  • Communication Part A & Part B *
  • Ethnic Studies *
  • Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

College of Letters & Science Breadth and Degree Requirements: Bachelor of Arts (B.A.)

Students pursuing a bachelor of arts degree in the College of Letters & Science must complete all of the requirements below. The College of Letters & Science allows this major to be paired with either a bachelor of arts or a bachelor of science curriculum. View a comparison of the degree requirements here.

Bachelor of Arts degree requirements

Mathematics Fulfilled with completion of University General Education requirements Quantitative Reasoning a (QR A) and Quantitative Reasoning b (QR B) coursework. Please note that some majors may require students to complete additional math coursework beyond the B.A. mathematics requirement.
Foreign Language
  • Complete the fourth unit of a foreign language; OR
  • Complete the third unit of a foreign language and the second unit of an additional foreign language

Note: A unit is one year of high school work or one semester/term of college work.
L&S Breadth
  • Humanities, 12 credits: 6 of the 12 credits must be in literature
  • Social Sciences, 12 credits
  • Natural Sciences, 12 credits: must include one 3+ credit course in the biological sciences; must include one 3+ credit course in the physical sciences
Liberal Arts and Science Coursework 108 credits
Depth of Intermediate/Advanced work 60 intermediate or advanced credits
Major Declare and complete at least one (1) major
Total Credits 120 credits
UW-Madison Experience 30 credits in residence, overall
30 credits in residence after the 86th credit
Minimum GPAs 2.000 in all coursework at UW–Madison
2.000 in intermediate/advanced coursework at UW–Madison

Non–L&S students pursuing an L&S major

Non–L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements and do not need to complete the L&S breadth and degree requirements above.  Please note that the following special degree programs are not considered majors so are not available to non–L&S degree-seeking candidates:  

  • Applied Mathematics, Engineering and Physics (Bachelor of Science–Applied Mathematics, Engineering and Physics)
  • Journalism (Bachelor of Arts–Journalism; Bachelor of Science–Journalism)
  • Music (Bachelor of Music)
  • Social Work (Bachelor of Social Work)

Requirements for the Major

The major requires a minimum of 34 credits in the field of specialization, with at least 6 of these credits in ASTRON and at least 28 credits in PHYSICS.

Course requirements for the major are:

Astronomy 1
Complete at least two of the following:6
Stellar Astrophysics 2
The Interstellar Medium
Galaxies 2
Cosmology 2
Solar System Astrophysics
Techniques of Modern Observational Astrophysics 2
Physics
Complete one of the following sequences for Introductory Physics: 328
Sequence 1 (recommended):
A Modern Introduction to Physics
and A Modern Introduction to Physics
and A Modern Introduction to Physics
Sequence 2:
General Physics
and General Physics
and Modern Physics for Engineers
Sequence 3:
General Physics
and General Physics
and Introduction to Modern Physics
Mechanics, Electromagnetic Fields, & Thermal Physics (complete all):
Mechanics
Electromagnetic Fields
Thermal Physics
Atomic & Quantum Physics (complete either):
Atomic and Quantum Physics
and Atomic and Quantum Physics
or
Introduction to Quantum Mechanics
Complete one 300-level or higher laboratory course:
Radio Astronomy Laboratory
Electric Circuits and Electronics
Additional PHYSICS to reach minimum of 28 credits
Total Credits34

 Residence and quality of work

  • 2.000 GPA in all ASTRON, all PHYSICS, and all major courses
  • 2.000 GPA on 15 upper-level major credits in residence1
  • 15 credits in ASTRON and PHYSICS, taken on campus

Honors in the Major

Students may declare Honors in the Major in consultation with the Astronomy–Physics undergraduate advisor(s).

Honors in the Major Requirements

To earn Honors in the Major, students must satisfy both the requirements for the major (above) and the following additional requirements:

  • Earn a 3.300 University GPA
  • Earn a 3.500 GPA for all ASTRON and PHYSICS courses, and all courses accepted in the major, at the 300 level or higher
  • Complete the following coursework:
    • Four 300-level or higher ASTRON courses, with a 3.500 GPA
    • A two-semester Senior Honors Thesis in ASTRON 681 and ASTRON 682, with a grade of AB or better, for a total of 6 credits.

University Degree Requirements 

Total Degree To receive a bachelor's degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.
Residency Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. “In residence” credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.
Quality of Work Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.
  1. Learn how astronomical observations are made and how astronomical data are analyzed. Become acquainted with basic principles of astronomical imaging and spectroscopy, detectors, and interferometry. Apply simple statistical concepts learned previously in required laboratory courses to astronomical data. Use simple scientific computing methods to plan astronomical observations and analyze astronomical data.
  2. Become familiar with current astrophysical theories and observations of basic systems such as planets, stars, interstellar gas, galaxies, and structure of the Universe (cosmology). Learn to apply physical principles and mathematical techniques learned previously in required courses to understand the natural laws governing these systems. Use simple scientific computing methods to analyze and physically interpret numerical models of astronomical systems.
  3. Learn how to read and critically evaluate scientific literature. Grasp the main points, scientific goals, and research methods used in an article and discern whether the article supports or conflicts with material presented elsewhere.
  4. Learn the basics of oral and written scientific communication. Written coursework will be assessed on the basis of clear writing, appropriate level of detail in reporting calculations, and computations and appropriate bibliographic references and citations as well as on scientific accuracy. Learn to give clear and accurate short oral presentations with appropriate supporting materials.
  5. Be trained in principles and standards of professional and ethical conduct. Learn when and how to cite references and when it is appropriate to credit the contributions of others or claim credit for one’s own work. Learn what constitutes a professional or unprofessional demeanor and how to apply principles of equality in an educational or workplace setting. Learn how to address a breakdown of professional ethics and standards if experienced or observed.
  6. Develop the skills to carry out a small independent research project. Learn to define the scope of the project, how to conduct an effective literature search, and perform computations, analyze data, and report on the literature as appropriate. Learn the basics of presenting the results of the project, whether as a paper, poster, talk, or some combination. The project may involve group work, or teamwork, depending on logistics and the nature of the project. Note: Not all Astronomy majors engage in independent research; this learning goal applies only to majors who have a formal research advisor to perform the assessment.
First Year
FallCreditsSpringCredits
MATH 2215MATH 2224
Communication A3ASTRON 200 or 1033
Social Science Breadth3Ethnic Studies3
Foreign Language (if needed)4Biological Science Breadth3
 Humanities Breadth3
 15 16
Second Year
FallCreditsSpringCredits
PHYSICS 247, 201, or 2075PHYSICS 248, 202, or 2085
MATH 2344Biological Science Breadth3
Communication B4Literature Breadth3
Humanities Breadth3Elective4
 16 15
Third Year
FallCreditsSpringCredits
PHYSICS 249, 205, or 2414PHYSICS 3113
Literature Breadth3ASTRON 320 (or another 300+ level ASTRON course)3
Social Science Breadth3Social Science Breadth3
Elective3Electives6
 13 15
Fourth Year
FallCreditsSpringCredits
PHYSICS 3223PHYSICS 4493
PHYSICS 4483PHYSICS 4153
ASTRON 5102Social Science Breadth3
ASTRON 310 (or another 300+ level ASTRON course)3Electives7
Elective3 
 14 16
Total Credits 120

Advising       

For premajor advising and major advising, students should contact Undergraduate Advisor Eric Schueffner at elschueffner@wisc.edu, or Faculty Advisors: Professor Richard Townsend (4550 Sterling Hall, townsend@astro.wisc.edu) and Professor Snezana Stanimirovic, (4514 Sterling Hall, sstanimi@astro.wisc.edu).

We encourage students to meet major advisors as early as possible. Undergraduate advisor Eric Schueffner can assist students with curriculum and course scheduling, career planning, academic concerns, and overall performance and strategies.      

Additional information and handouts on the major are available in the office of the undergraduate coordinator Heather Sauer (2554 Sterling Hall, hsauer@wisc.edu).

To declare the astronomy–physics major, please contact Professor Townsend or Professor Stanimirovic to schedule an appointment.

Recommended Additional Courses

Math: Mathematics courses other than those required as prerequisites for PHYSICS courses are not required for the major, but the following courses are recommended: MATH 319 Techniques in Ordinary Differential Equations, MATH 321 Applied Mathematical Analysis and MATH 322 Applied Mathematical Analysis. If a student plans to work toward the Ph.D degree, the student should also take MATH 320 Linear Algebra and Differential Equations or MATH 340 Elementary Matrix and Linear Algebra. Additional mathematics (or statistics) courses should be chosen after consultation with the undergraduate advisor.

Computing: Computers are fundamental to astronomical research. An introduction through Introduction to Programming, or short courses run by the computing center should be considered.

Chemistry: A college course in physical or organic chemistry is useful for astronomy students. Physical chemistry is particularly valuable for those interested in the interstellar medium, comets, and planets.

Statistics: A background in statistics is valuable, particularly for students interested in observational astronomy. STAT 301 Introduction to Statistical Methods, or STAT/​MATH  309 Introduction to Probability and Mathematical Statistics I/STAT/​MATH  310 Introduction to Probability and Mathematical Statistics II  for a more solid foundation, are suggested.

Languages: French, German, Russian, and especially Spanish are the most useful foreign languages for astronomy students, but are not required.

L&S career resources

SuccessWorks at the College of Letters & Science helps students leverage the academic skills learned in their major, certificates, and liberal arts degree; explore and try out different career paths; participate in internships; prepare for the job search and/or graduate school applications; and network with professionals in the field (alumni and employers). In short, SuccessWorks helps students in the College of Letters & Science discover themselves, find opportunities, and develop the skills they need for success after graduation.

SuccessWorks can also assist students in career advising, résumé and cover letter writing, networking opportunities, and interview skills, as well as course offerings for undergraduates to begin their career exploration early in their undergraduate career. 

Students should set up their profiles in Handshake to take care of everything they need to explore career events, manage their campus interviews, and apply to jobs and internships from 200,000+ employers around the country.

Professors Barger, Bershady, Heinz, Lazarian, Mathieu, Stanimirovic, Wilcots, Zweibel

Associate Professors Townsend, Tremonti 

Assistant Professor D'Onghia

Student Coordinator: Heather Sauer