The study of atmospheric and oceanic sciences includes all aspects of the atmosphere and physical oceanography, their mutual interaction, and their interaction with space and the rest of the earth system. Although a primary goal is to understand the atmosphere and ocean for the purpose of predicting the weather, atmospheric and oceanic sciences embraces much more: motions at large, medium, and small scales; past, present, and future climates; air chemistry and quality; clouds and precipitation; and solar and terrestrial radiation. In many areas, new remotesensing technology including satellites is used to provide circulation patterns at both global and local scales.
Many undergraduates take an elementary atmospheric and oceanic sciences course to meet part of their natural or physical science breadth requirements. Other students, who have had sufficient mathematics and physics preparation, take higherlevel atmospheric and oceanic sciences courses to complement their major work in other fields of natural science. An atmospheric and oceanic sciences major receives a thorough introduction to the basic concepts and tools in the core courses, which cover the physics and dynamics of the atmosphere and ocean. An array of elective courses are offered in the senior year, with tracks in the areas of weather systems, earth/environmental science, and general and applied atmospheric and oceanic sciences. Elective groups are tailored individually. Some students will want preparation for careers in areas such as operational forecasting, environmental consulting, and broadcasting. Others will seek preparation for graduate work leading to a broader range of careers.
Students wishing to declare the Atmospheric and Oceanic Sciences major should meet with an AOS undergraduate academic advisor. Contact information for advisors can be found on the Advising and Careers page.
University General Education Requirements
All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements section of the Guide.
General Education 
* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements. 
College of Letters & Science Degree Requirements: Bachelor of Arts (B.A.)
Students pursuing a bachelor of arts degree in the College of Letters & Science must complete all of the requirements below. The College of Letters & Science allows this major to be paired with either a bachelor of arts or a bachelor of science curriculum.
Bachelor of Arts degree requirements
Mathematics  Complete the University General Education Requirements for Quantitative Reasoning A (QRA) and Quantitative Reasoning B (QRB) coursework. 
Foreign Language 

L&S Breadth 

Liberal Arts and Science Coursework  Complete at least 108 credits. 
Depth of Intermediate/Advanced work  Complete at least 60 credits at the intermediate or advanced level. 
Major  Declare and complete at least one major. 
Total Credits  Complete at least 120 credits. 
UWMadison Experience 

Quality of Work 

Non–L&S students pursuing an L&S major
Non–L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements. They do not need to complete the L&S Degree Requirements above.
Requirements for the Major
Code  Title  Credits 

Calculus (complete all):  
MATH 221  Calculus and Analytic Geometry 1  5 
MATH 222  Calculus and Analytic Geometry 2  4 
MATH 234  CalculusFunctions of Several Variables  4 
Physics (complete one course from each group):  
PHYSICS 207  General Physics  5 
or PHYSICS 201  General Physics  
or PHYSICS 247  A Modern Introduction to Physics  
PHYSICS 208  General Physics  5 
or PHYSICS 202  General Physics  
or PHYSICS 248  A Modern Introduction to Physics  
Computer Sciences (complete one):  3  
Data Science Programming I  
Problem Solving Using Computers  
Data Science Programming II  
Machine Organization and Programming  
Introduction to Numerical Methods  
Introduction to Combinatorial Optimization  
Total Credits  26 
Code  Title  Credits 

Core Sequence (complete all):  
ATM OCN 310  Dynamics of the Atmosphere and Ocean I  3 
ATM OCN 311  Dynamics of the Atmosphere and Ocean II  3 
ATM OCN 330  Physics of the Atmosphere and Ocean I  3 
ATM OCN 340  Physics of the Atmosphere and Ocean II  3 
Quantitative Analysis (complete one):  3  
Introduction to Numerical Methods  
Introduction to Combinatorics  
Numerical Analysis  
Linear Optimization  
Introduction to Probability and Mathematical Statistics I  
Introduction to Probability and Mathematical Statistics II  
Techniques in Ordinary Differential Equations  
Linear Algebra and Differential Equations  
Applied Mathematical Analysis  
Applied Mathematical Analysis  
An Introduction to Probability and Markov Chain Models  
Elementary Matrix and Linear Algebra  
Linear Algebra  
Topics in MultiVariable Calculus and Linear Algebra  
Topics in MultiVariable Calculus and Differential Equations  
Topics in Mathematics Study Abroad  
Applied Dynamical Systems, Chaos and Modeling  
The Theory of Single Variable Calculus  
Introduction to Combinatorial Optimization  
Introduction to the Theory of Probability  
Introduction to Cryptography  
Introduction to Modern Algebra  
Applied Linear Algebra  
College Geometry I  
Introduction to Number Theory  
Mathematics for Secondary School Teachers  
History of Mathematics  
Introduction to Combinatorics  
Undergraduate Seminar  
Topics in Undergraduate Mathematics  
Numerical Linear Algebra  
Numerical Analysis  
Ordinary Differential Equations  
Analysis I  
Analysis II  
Linear Optimization  
Probability Theory  
Mathematical Methods in Data Science  
Linear Algebra II  
Modern Algebra  
Modern Algebra  
Elementary Topology  
Elementary Geometric and Algebraic Topology  
Differential Geometry  
Modern Number Theory  
Fundamentals of Set Theory  
Mathematical Logic  
Stochastic Methods for Biology  
MATH 606  
Topics in Mathematics Study Abroad  
Mathematical Methods for Physical Modeling in Biology  
Mathematical Methods for Systems Biology  
Analysis of Partial Differential Equations  
Analysis III  
Complex Analysis  
Introduction to Fourier Analysis  
Introduction to Measure and Integration  
Introduction to Stochastic Processes  
Introduction to Probability and Mathematical Statistics I  
Introduction to Probability and Mathematical Statistics II  
Introduction to Theory and Methods of Mathematical Statistics I  
Introduction to Theory and Methods of Mathematical Statistics II  
Introductory Applied Statistics for Engineers  
Learning a Statistical Language  
Applied Regression Analysis  
Data Science Modeling II  
Introduction to Time Series  
Introductory Nonparametric Statistics  
Topics in Statistics Study Abroad  
Introductory Applied Statistics for the Life Sciences  
An Introduction to Sample Survey Theory and Methods  
Applied Categorical Data Analysis  
Statistical Experimental Design  
Introduction to the Theory of Probability  
Applied Multivariate Analysis  
Financial Statistics  
Introduction to Computational Statistics  
Introduction to Combinatorics  
Special Topics in Statistics  
Linear Optimization  
Introduction to Biostatistics  
Introduction to Clinical Trials I  
Practicum in Clinical Trial Data Analysis and Interpretation  
Statistical Methods for Bioscience I  
Statistical Methods for Bioscience II  
Statistical Methods for Spatial Data  
Statistical Methods I  
Statistical Methods II  
Data Science Computing Project  
Mathematical Statistics I  
Introduction to Statistical Inference  
Statistical Learning  
Professional Skills in Data Science  
Data Science Practicum  
Introduction to Stochastic Processes  
Statistical Methods for Clinical Trials  
Statistical Methods for Epidemiology  
Special Topics in Statistics  
Senior Honors Thesis  
Senior Honors Thesis  
Capstone  
ATM OCN 405  AOS Senior Capstone Seminar  1 
Electives  11  
Topics in Meteorology  
Meteorological Measurements  
Global Climate Processes  
Radar and Satellite Meteorology  
Synoptic Laboratory I: The Frontal Cyclone  
Synoptic Laboratory II: Mesoscale Meteorology  
Teacher Workshop in Satellite Meteorology  
ATM OCN 509  
Bioclimatology  
Tropical Meteorology  
Past Climates and Climatic Change  
Environmental Biophysics  
Atmospheric Dispersion and Air Pollution  
Computational Methods in Atmospheric and Oceanic Sciences  
Climatological Analysis  
Geophysical Fluid Dynamics I  
Geophysical Fluid Dynamics II  
Laboratory in Rotating Fluid Dynamics  
Introduction to Atmospheric and Oceanic Physics  
Cloud Physics  
Atmospheric Chemistry  
Radiation in the Atmosphere and Ocean  
SynopticDynamic Laboratory  
Introduction to Physical Oceanography  
Senior Honors Thesis  
Senior Honors Thesis  
Senior Thesis  
Senior Thesis  
Directed Study ^{2}  
Directed Study ^{2}  
Total Credits  27 
Residence and Quality of Work
 2.000 GPA in all ATM OCN and major courses
 2.000 GPA on 15 upperlevel credits in the major, taken in Residence. ^{3}
 15 credits in ATM OCN, taken on campus
Honors in the Major
Students may declare Honors in the Atmospheric and Oceanic Sciences Major in consultation with the Atmospheric and Oceanic Sciences undergraduate advisor.
Requirements
To earn Honors in the Major in Atmospheric and Oceanic Sciences, students must satisfy both the requirements for the major (above) and the following additional requirements:
 Earn a 3.300 University GPA
 Earn a 3.400 GPA for all ATM OCN courses, and all courses accepted in the major
 Complete the following additional coursework:
 ATM OCN 610 or ATM OCN 611 and
 ATM OCN 681 and ATM OCN 682 for a total of 6 credits
Footnotes
 ^{ 1 }
Note that core sequence begins in the fall semester only.
 ^{ 2 }
A maximum 2 credits of Electives may come from Internship or Directed Study courses.
 ^{ 3 }
ATM OCN 300 through ATM OCN 699 are upperlevel in the major.
University Degree Requirements
Total Degree  To receive a bachelor's degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements. 
Residency  Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. “In residence” credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs. 
Quality of Work  Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation. 
 Recognize and describe the fundamental principles and processes associated with the dynamics and thermodynamics of geophysical fluid flows, the basic physics of clouds, aerosols, and precipitation.
 Recognize and describe the fundamental principles and processes associated with radiation and atmospheric and oceanic radiative transfer.
 Demonstrate critical thinking skills by identifying a problem, identifying the required information to solve that problem; and formulating and interpreting solutions to that problem using appropriate analytical and/or computational techniques.
 Apply diagnostic tools to to analyses and numerical model output to diagnose, describe, and interpret the fundamental dynamical and thermodynamical processes at work in synopticscale, mesoscale, and largescale weather systems and climate circulations.
 Apply fundamental radiative transfer theory to interpret remotelysensed observations of atmospheric and oceanic phenomena.
 Design and conduct experiments and/or analyze data to test hypotheses in an area of atmospheric or climate sciences.
 Demonstrate effective scientific communication skills through development and delivery of oral presentations (including poster presentations) and written reports and case studies.
Sample FourYear Plan
This Sample FourYear Plan is a tool to assist students and their advisor(s). Students should use it—along with their DARS report, the Degree Planner, and Course Search & Enroll tools—to make their own fouryear plan based on their placement scores, credit for transferred courses and approved examinations, and individual interests. As students become involved in athletics, honors, research, student organizations, study abroad, volunteer experiences, and/or work, they might adjust the order of their courses to accommodate these experiences. Students will likely revise their own fouryear plan several times during college.
First Year  

Fall  Credits  Spring  Credits 
MATH 221 (QRB)  5  MATH 222  4 
ATM OCN 100 or 101  4  ATM OCN/ENVIR ST 171 (Comm B)  3 
Communication A  3  Literature Breadth  3 
Foreign Language  4  Biological Science Breadth  3 
16  13  
Second Year  
Fall  Credits  Spring  Credits 
MATH 234  4  Humanities Breadth  3 
PHYSICS 207  5  PHYSICS 208  5 
Biological Science Breadth  3  COMP SCI 220  4 
Ethnic Studies  4  Social Science Breadth  3 
16  15  
Third Year  
Fall  Credits  Spring  Credits 
ATM OCN 310  3  ATM OCN 311  3 
ATM OCN 330  3  ATM OCN 340  3 
Literature Breadth  3  Biological Science Breadth  3 
ADV MATH/COMP SCI/STATS  3  Humanities Breadth  3 
Social Science Breadth  4  Elective  3 
16  15  
Fourth Year  
Fall  Credits  Spring  Credits 
ATM OCN 400 or higher  3  ATM OCN numbered 400 or higher  3 
ATM OCN 400 or higher  4  ATM OCN numbered 400 level or higher  4 
Elective  4  ATM OCN 699 (or elective)  3 
Social Science Breadth  4  ATM OCN 405  1 
Elective  3  
15  14  
Total Credits 120 
General Advising
Any student interested in the atmospheric and oceanic sciences major should meet with the AOS undergraduate advisor, Eric Schueffner, to discuss steps to complete the necessary prerequisite coursework for the major. Eric can be reached at 6088903231 or elschueffner@wisc.edu. A Major Declaration Form must be completed by the student and authorized by Professor Michael Morgan to complete the major declaration process. Professor Morgan can be reached at 6082658159 or mcmorgan@wisc.edu. Students should bring a current DARS report to their individual advising appointment.
CAREER ADVISING
The Department of Atmospheric and Oceanic Sciences encourages majors to begin working on their career exploration and preparation soon after arriving on campus. We partner with SuccessWorks at the College of Letters & Science. L&S graduates are in high demand by employers and graduate programs. It is important that students are career ready at the time of graduation, and we are committed to your success.
L&S career resources
Every L&S major opens a world of possibilities. SuccessWorks at the College of Letters & Science helps students turn the academic skills learned in their major, certificates, and other coursework into fulfilling lives after graduation, whether that means jobs, public service, graduate school or other career pursuits.
In addition to providing basic support like resume reviews and interview practice, SuccessWorks offers ways to explore interests and build career skills from their very first semester/term at UW all the way through graduation and beyond.
Students can explore careers in oneonone advising, try out different career paths, complete internships, prepare for the job search and/or graduate school applications, and connect with supportive alumni and even employers in the fields that inspire them.
 SuccessWorks
 Set up a career advising appointment
 Enroll in a Career Course  a great idea for first and secondyear students:
 INTERLS 210 L&S Career Development: Taking Initiative (1 credit)
 INTERLS 215 Communicating About Careers (3 credits, fulfills Comm B General Education Requirement)
 Learn about internships and internship funding
 Activate your Handshake account to apply for jobs and internships from 200,000+ employers recruiting UWMadison students
 Learn about the impact SuccessWorks has on students' lives
PROFESSORS
Ackerman, Steve
Desai, Ankur (chair)
Hitchman, Matt
Holloway, Tracey
L'Ecuyer, Tristan
Martin, Jonathan
Morgan, Morgan
Petty, Grant
Pierce, Brad
Tripoli, Greg
Vimont, Dan
ASSOCIATE PROFESSORS
Back, Larissa
ASSISTANT PROFESSORS
AdamesCorraliza, Ángel
Henderson, Stephanie
Maroon, Elizabeth
Rowe, Angela
Wagner, Till
Zanowski, Hannah