grad-nuclearengineering

A broad program of instruction and research is offered in the principles of the interaction of radiation with matter and their applications, and in several areas of engineering physics. The program has strong engineering and applied science components. It emphasizes several areas of activity, including the research, design, development, and deployment of fission reactors; fusion engineering; plasma physics; radiation damage to materials; applied superconductivity and cryogenics; and large-scale computing in engineering science.

The master's degree may be pursued as a terminal degree in the fission area and in various engineering physics areas, but it is not generally recommended as a final degree in fusion research; students interested in fusion should plan to pursue the Ph.D. degree. About 40 percent of the current graduate students hold undergraduate degrees in nuclear engineering, about 40 percent in physics, and about 20 percent in other disciplines such as mechanical engineering, electrical engineering, mathematics, and materials science.

The department is considered to have one of the top five nuclear engineering programs in the nation over the last 40 years. It incorporates several research organizations including the Wisconsin Institute of Nuclear Systems, the Pegasus Toroidal Experiment Program, the Fusion Technology Institute, and the Center for Plasma Theory and Computation.

Research may be performed in areas including next generation fission reactor engineering; fluid and heat transfer modeling for transient analysis; reactor monitoring and diagnostics; fuel cycle analysis; magnetic and inertial confinement fusion reactor engineering, including the physics of burning plasmas, plasma-wall interactions, neutron transport, tritium breeding, radiation damage, and liquid-metal heat transfer; experimental and theoretical studies of plasmas including radio frequency heating, magnetic confinement, plasma instabilities, and plasma diagnostics; superconducting magnets and cryogenics; and theoretical and experimental studies of the damage to materials in fission and fusion reactors.

The department places considerable emphasis on establishing research teams or group research, as well as traditional research activity by individual faculty members and their students. The groups frequently involve faculty, scientific staff, and graduate students from several departments, adding a strong interdisciplinary flavor to the research.

Students sometimes perform thesis work at national laboratories such as Argonne National Laboratory, Idaho National Laboratory, Princeton Plasma Physics Laboratory, and Los Alamos National Laboratory.

The Graduate School sets minimum requirements for admissions. Academic program admission requirements are often more rigorous than those set by the Graduate School. Please check the program website for details and admissions deadlines.

Graduate School Admissions

Graduate admissions is a two-step process between academic degree programs and the Graduate School. Applicants must meet requirements of both the program(s) and the Graduate School. Once you have researched the graduate program(s) you are interested in, apply online.  

Graduate School Resources

Resources to help you afford graduate study might include assistantships, fellowships, traineeships, and financial aid. Further funding information is available from the Graduate School. Be sure to check with your program for individual policies and processes related to funding.

Program Resources

Admission and funding are separate decisions. Not all admitted students are offered support. International applicants must secure a research assistantship, teaching assistantship, fellowship, or independent funding before admission is final. A portion of the top domestic applicants are invited to visit Madison in March. The funding for RAs comes from faculty research grants. Each professor decides on his or her own RA offers. Funded students are expected to maintain full time enrollment.  See the program website for additional information.

Minimum Graduate School Requirements

Review the Graduate School minimum academic progress and degree requirements, in addition to the program requirements listed below.

Major Requirements

MODE OF INSTRUCTION

Face to Face Evening/Weekend Online Hybrid Accelerated
Yes No No No No

Mode of Instruction Definitions

CURRICULAR REQUIREMENTS

Minimum Credit Requirement 51 credits
Minimum Residence Credit Requirement 32 credits
Minimum Graduate Coursework Requirement 26 of the required 51 credits must be in graduate-level coursework from nuclear engineering, math, physics, chemistry, computer science, or any other engineering department except E P D; courses with the Graduate Level Coursework attribute are identified and searchable in the university's Course Guide (http://my.wisc.edu/CourseGuideRedirect/BrowseByTitle).
Overall Graduate GPA Requirement 3.00 GPA required.
Other Grade Requirements Courses in which grades of BC, C, or below are received cannot be counted toward the degree except as follows: 1) Credits of C will be allowed provided they are balanced by twice as many credits of A or by four times as many credits of AB, 2) Credits of BC will be allowed provided they are balanced by twice as many credits of AB or by an equal number of credits of A.
Assessments and Examinations Ph.D. qualifying examination is required of all students.

After acceptance of the student’s doctoral plan of study, the student must take an oral preliminary examination.

Final oral examination is required at the end of the thesis work.
Language Requirements No language requirements.
Doctoral Minor/Breadth Requirements All doctoral students are required to complete a 10-credit minor.

Required COURSES

Students must fulfill the coursework requirements for the nuclear engineering and engineering physics M.S. degree whether receiving the M.S. degree or going directly to the Ph.D. They must complete an additional 9 credits of technical coursework at the graduate level, beyond the coursework requirement for the M.S. The candidate is also required to complete, as a graduate student, one course at the 400 level or above in each of the following areas: fission reactors; plasma physics and fusion; materials; engineering mathematics and computation (see below for example courses).

Candidates must take three 700-level courses; must satisfy the Ph.D. technical minor requirement; and must satisfy the Ph.D. non-technical minor requirement.

M.S. Coursework

The following courses, or courses with similar material content, must be taken prior to or during the course of study: N E 427 Nuclear Instrumentation Laboratory; N E 428 Nuclear Reactor Laboratory or N E 526 Laboratory Course in Plasmas; N E 408 Ionizing Radiation or N E/​MED PHYS  569 Health Physics and Biological Effects.

Thesis track1: maximum of 12 credits for thesis; at least 8 credits of N E courses 400 level or above; remaining credits (also 400 level or above) must be in appropriate technical areas; at least 9 credits must be 500 level and above; up to 3 credits can be seminar credits.

Non-Thesis track1: at least 15 credits of N E courses at the 400 level or above; remaining 15 credits (also 400 level or above) must be in appropriate technical areas; at least 12 credits must be at the 500 level or above; up to 3 credits can be seminar credits.

For both the thesis and non-thesis options, only one course (maximum of 3 credits) of independent study (N E 699 Advanced Independent Study, N E 999 Advanced Independent Study) is allowed.

Area Coursework Examples

These courses are examples that would meet the requirement and are not meant to be a restricted list of possible courses.

Fission Reactors
N E 405 Nuclear Reactor Theory3
N E 408 Ionizing Radiation3
N E 411 Nuclear Reactor Engineering3
N E/​MED PHYS  506 Monte Carlo Radiation Transport3
N E/​M E  520 Two-Phase Flow and Heat Transfer3
N E 550 Advanced Nuclear Power Engineering3
N E 555 Nuclear Reactor Dynamics3
N E/​M E  565 Power Plant Technology3
N E/​I SY E  574 Methods for Probabilistic Risk Analysis of Nuclear Power Plants3
Plasma Physics & Fusion
N E/​E C E/​PHYSICS  525 Introduction to Plasmas3
N E/​E C E/​PHYSICS  527 Plasma Confinement and Heating3
N E/​E C E  528 Plasma Processing and Technology3
N E 536 Feasibility St of Power from Controlled Thermonuclear Fusion3
Materials
N E/​M S & E  423 Nuclear Engineering Materials3
N E 541 Radiation Damage in Metals3
PHYSICS 551 Solid State Physics3
Engineering Mathematics & Computation
E P/​E M A  547 Engineering Analysis I3
E P/​E M A  548 Engineering Analysis II3
COMP SCI/​MATH  513 Numerical Linear Algebra3
COMP SCI/​MATH  514 Numerical Analysis3
MATH 703 Methods of Applied Mathematics 13

Graduate School Policies

The Graduate School’s Academic Policies and Procedures provide essential information regarding general university policies. Program authority to set degree policies beyond the minimum required by the Graduate School lies with the degree program faculty. Policies set by the academic degree program can be found below.

Major-Specific Policies

Graduate Program Handbook

The Graduate Program Handbook is the repository for all of the program's policies and requirements.

Prior Coursework

Graduate Work from Other Institutions

With program approval, students are allowed to count no more than 6 credits of graduate coursework from other institutions toward the minimum graduate degree credit requirement and the minimum graduate coursework (50%) requirement. Coursework earned ten years or more prior to admission to a doctoral degree is not allowed to satisfy requirements.

UW–Madison Undergraduate

With faculty approval, students who have received their undergraduate degree from UW–Madison may apply up to 7 credits numbered 400 or above toward the minimum graduate degree credit requirement. This work would not be allowed to count toward the 50% graduate coursework minimum unless taken at the 700 level or above. No credits can be counted toward the minimum graduate residence credit requirement. Coursework earned ten years or more prior to admission to a doctoral degree is not allowed to satisfy requirements.

With faculty approval, students who have received an ABET-accredited undergraduate degree (not including UW–Madison) may be eligible to apply up to 7 credits of their undergraduate coursework toward the Minimum Graduate Degree Credit Requirement. No credits can be counted toward the Minimum Graduate Residence Credit Requirement, nor the Minimum Graduate Coursework (50%) Requirement. 

Coursework earned five or more years prior to admission to a master's degree is not allowed to satisfy requirements.

UW–Madison University Special

With program approval, students are allowed to count up to 15 credits of coursework numbered 400 or above taken as a UW–Madison special student toward the minimum graduate residence credit requirement, and the minimum graduate degree credit requirement. UW–Madison coursework taken as a University Special student would not be allowed to count toward the 50% graduate coursework minimum unless taken at the 700 level or above. Coursework earned ten years or more prior to admission to a doctoral degree is not allowed to satisfy requirements.

Probation

A semester GPA below 3.0 will result in the student being placed on academic probation. If a semester GPA of 3.0 is not attained during the subsequent semester of full time enrollment (or 12 credits of enrollment if enrolled part-time) the student may be dismissed from the program or allowed to continue for one additional semester based on advisor appeal to the Graduate School.

ADVISOR / COMMITTEE

Each student is required to meet with his or her advisor prior to registration every semester.

CREDITS PER TERM ALLOWED

15 credits

Time Constraints

The Ph.D. qualifying examination should be first taken no later than completion of the M.S. requirements, or the beginning of the fifth semester of graduate study, whichever comes first. Students entering the program with a master’s degree in E M A, E P or N E from another institution, and taking the qualifying exam in that same major, must take the exam by the beginning of their third semester.

Students must submit the doctoral plan of study one month before the end of the semester following the one in which the qualifying exam is passed.

Candidates are expected to pass the Ph.D. preliminary examination no later than the end of the third year of graduate study, or by the end of the second regular semester following the one in which the Ph.D. qualifying examination was passed, whichever is later. A candidate who fails to take the preliminary examination within four years of passing the qualifying examination must retake the qualifying examination.

An oral examination on the findings of the Ph.D. research is required at the end of the thesis work. The candidate must apply for a warrant from the Graduate School through the student services office at least three weeks before the exam.  The final oral examination must be taken within five years of passing the preliminary examination.

Other

Admission and funding are separate decisions. Not all admitted students are offered support. International applicants must secure a Research Assistantship, Teaching Assistantship, fellowship, or independent funding before admission is final. A portion of the top domestic applicants are invited to visit Madison in March. The funding for RAs comes from faculty research grants. Each professor decides on their own RA offers. Funded students are expected to maintain full time enrollment.

Graduate School Resources

Take advantage of the Graduate School's professional development resources to build skills, thrive academically, and launch your career. 

1. Demonstrate an ability to synthesize knowledge from a subset of the biological, physical, and social sciences to help frame problems critical to the future of their discipline.

2. Conduct original research.

3. Demonstrate an ability to create new knowledge and communicate it to their peers.

4. Fosters ethical and professional conduct.

Faculty: Professors T. Allen, Blanchard, Bonazza, Crone, Fonck, Hegna, Henderson (chair), Lakes, Smith, Sovinec, Waleffe, Wilson; Associate Professors M. Allen, Schmitz, Witt; Assistant Professors Couet, Notbohm, Scarlat, Thevamaran; Affiliate Professors Bednarz, Bier, Graham, Ludois, Ma, Miller, Morgan, Nellis, Pfotenhauer, Porter, Prabhakar, Robertson, Szlufarska, Thomadsen, Trujillo, Vanderby; Emeritus Professors Abdel-Khalik, Bisognano, Callen, Carbon, Conrad, Cook, Corradini, DeLuca, Drugan, Emmert, Hershkowitz, Kammer, Kulcinski, Mackie, Malkus, Moses, Plesha, Sandor, Schlack, Vogelsang